首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Maintenance of soil organic carbon (SOC) is important for sustainable use of soil resources due to the multiple effects of SOC on soil nutrient status and soil structural stability. The objective of this study was to identify the changes in soil aggregate distribution and stability, SOC, and nitrogen (N) concentrations after cropland was converted to perennial alfalfa (Medicago sativa L. Algonguin) grassland for 6 years in the marginal oasis of the middle of Hexi Corridor region, northwest China. Significant changes in the size distribution of dry-sieving aggregates and water-stable aggregates, SOC, and N concentrations occurred after the conversion from crop to alfalfa. SOC and N stocks increased by 20.2% and 18.5%, respectively, and the estimated C and N sequestration rates were 0.4 Mg C ha−1 year−1 and 0.04 Mg N ha−1 year−1 following the conversion. The large aggregate (>5 mm) was the most abundant dry aggregate size fraction in both crop and alfalfa soils, and significant difference in the distribution of dry aggregates between the two land use types occurred only in the >5 mm aggregate fraction. The percentage of water-stable macroaggregates (>2, 2–0.25 mm) and aggregate stability (mean weight diameter of water-stable aggregates, WMWD) were significantly higher in alfalfa soils than in crop soils. There was a significant linear relationship between total SOC concentration and aggregate parameters (mean weight diameter) for alfalfa soils, indicating that aggregate stability was closely associated with increased SOC concentration following the conversion of crops to alfalfa. The SOC and N concentrations and the C/N ratio were greatest in the >2 mm water-stable aggregates and the smallest in the 0.25–0.05 mm aggregates in crop and alfalfa soils. For the same aggregate, SOC and N concentrations in aggregate fractions increased with increasing total SOC and N concentrations. The result showed that the conversion of annual crops to alfalfa in the marginal land with coarse-texture soils can significantly increase SOC and N stocks, and improve soil structure.  相似文献   

2.
The objective of this research was to evaluate the impacts of increasing product removal on biomass and nutrient content of a central hardwood forest ecosystem. Commercial thinning, currently the most common harvesting practice in southern New England, was compared with whole-tree clearcutting or maximum aboveground utilization. Using a paired-watershed approach, we studied three adjacent, first-order streams in Connecticut. During the winter of 1981–82, one was whole-tree clearcut, one was commercially thinned, and one was designated as the untreated reference. Before treatment, living and dead biomass and soil on the whole-tree clearcut site contained 578 Mg ha–1 organic matter, 5 Mg ha–1 nitrogen, 1 Mg ha–1 phosphorus, 5 Mg ha–1 potassium, 4 Mg ha–1 calcium, and 13 Mg ha–1 magnesium. An estimated 158 Mg ha–1 (27% of total organic matter) were removed during the whole-tree harvest. Calcium appeared to be the nutrient most susceptible to depletion with 13% of total site Ca removed in whole-tree clearcut products. In contrast, only 4% (16 Mg ha–1) of the total organic matter and 2% of the total nutrients were removed from the thinned site. Partial cuts appear to be a reliable management option, in general, for minimizing nutrient depletion and maximizing long-term productivity of central hardwood sites. Additional data are needed to evaluate the long-term impacts of more intensive harvests.  相似文献   

3.
Soil erosion under different vegetation covers in the Venezuelan Andes   总被引:13,自引:0,他引:13  
This comparative study of soil erosion considered different environments in an ecological unit of the Venezuelan Andes. The soils belong to an association of typic palehumults and humic dystrudepts. Soil losses were quantified by using erosion plots in areas covered by four types of vegetation, including both natural and cultivated environments. The highest soil erosion rate evaluated corresponded to horticultural crops in rotation: reaching a value of 22 Mg ha–1 per year. For apple tree (Malus sylvestris Miller) plots, soil losses reached values of 1.96 Mg ha–1 per year. Losses from pasture (Pennisetum clandestinum Hochst. ex Chiov.) plots, without livestock grazing, were as high as 1.11 Mg ha–1 during the second year of the experiment. The highest soil losses generated from plots under natural forest were equal to 0.54 Mg ha–1 per year. Environmental factors such as total and effective rainfall, runoff, and some soil characteristics as those related to soil losses by water erosion were evaluated. The type of management applied to each site under different land use type and the absence of conservation practices explain, to a large extent, the erosive processes and mechanisms.  相似文献   

4.
Grassland management affects soil organic carbon (SOC) storage and can be used to mitigate greenhouse gas emissions. However, for a country to assess emission reductions due to grassland management, there must be an inventory method for estimating the change in SOC storage. The Intergovernmental Panel on Climate Change (IPCC) has developed a simple carbon accounting approach for this purpose, and here we derive new grassland management factors that represent the effect of changing management on carbon storage for this method. Our literature search identified 49 studies dealing with effects of management practices that either degraded or improved conditions relative to nominally managed grasslands. On average, degradation reduced SOC storage to 95% ± 0.06 and 97% ± 0.05 of carbon stored under nominal conditions in temperate and tropical regions, respectively. In contrast, improving grasslands with a single management activity enhanced SOC storage by 14% ± 0.06 and 17% ± 0.05 in temperate and tropical regions, respectively, and with an additional improvement(s), storage increased by another 11% ± 0.04. We applied the newly derived factor coefficients to analyze C sequestration potential for managed grasslands in the U.S., and found that over a 20-year period changing management could sequester from 5 to 142 Tg C yr–1 or 0.1 to 0.9 Mg C ha–1 yr–1, depending on the level of change. This analysis provides revised factor coefficients for the IPCC method that can be used to estimate impacts of management; it also provides a methodological framework for countries to derive factor coefficients specific to conditions in their region.  相似文献   

5.
The rehabilitation of sandy desertified land in semi-arid and arid regions has a great potential to increase carbon sequestration and improve soil quality. Our objective was to investigate the changes in the soil carbon pool and soil properties of surface soil (0–15 cm) under different types of rehabilitation management. Our study was done in the short-term (7 years) and long-term (32 years) desertification control sites in a marginal oasis of northwest China. The different management treatments were: (1) untreated shifting sand land as control; (2) sand-fixing shrubs with straw checkerboards; (3) poplar (Populus gansuensis) shelter forest; and (4) irrigated cropland after leveling sand dune. The results showed that the rehabilitation of severe sandy desertified land resulted in significant increases in soil organic C (SOC), inorganic C, and total N concentrations, as well as enhanced soil aggregation. Over a 7-year period of revegetation and cultivation, SOC concentration in the recovered shrub land, forest land and irrigated cropland increased by 4.1, 14.6 and 11.9 times compared to the control site (shifting sand land), and increased by 11.2, 17.0 and 23.0 times over the 32-year recovery period. Total N, labile C (KMnO4–oxidation C), C management index (CMI) and inorganic C (CaCO3–C) showed a similar increasing trend as SOC. The increased soil C and N was positively related to the accumulation of fine particle fractions. The accumulation of silt and clay, soil C and CaCO3 enhanced the formation of aggregates, which was beneficial to mitigate wind erosion. The percentage of >0.25 mm dry aggregates increased from 18.0% in the control site to 20.0–87.2% in the recovery sites, and the mean weight diameter (MWD) of water-stable aggregates significantly increased, with a range of 0.09–0.30 mm at the recovery sites. Long-term irrigation and fertilization led to a greater soil C and N accumulation in cropland than in shrub and forest lands. The amount of soil C sequestration reached up to 1.8–9.4 and 7.5–17.3 Mg ha?1 at the 0–15 cm layer over a 7- and 32-year rehabilitation period compared to the control site, suggesting that desertification control has a great potential for sequestering soil C and improving soil quality in northwest China.  相似文献   

6.
Understanding the problems of grazing land in vertisol areas and seeking long-lasting solutions is the central point where mixed crop livestock is the second stay for the majority of the population. In order to understand this, the current study was conducted at two sites, one with 0–4% slope and the other with 4–8% slope at Ginchi watershed, 80 km west of Addis Ababa, Ethiopia. The specific objectives of the study were to quantify changes in plant species richness, biomass, plant cover, and soil physical and hydrological properties. The grazing regimes were: moderate grazing (regulated), heavy grazing (free grazing), and no grazing (closed to any grazing), which was considered the control treatment. The results showed that the biomass yield in nongrazed plots was higher than in the grazed plots. However, the biomass yield in grazed plots improved over the years. Species richness and percentage of dominant species attributes were better in medium grazed plots than the other treatments. Soil compaction was higher in very heavily grazed plots than in nongrazed and medium-grazed plots. In contrast to that, the soil water content and infiltration rate were better in nongrazed plots than in grazed plots. Soil loss in grazed plots decreased with the increase of biomass yields and as the soil was more compacted by livestock trampling during the wet season. Finally since the medium stocking rate is better in species richness and plant attributes, and lies between nongrazed and heavily grazed plots in the rest of the measured parameters, it could be the appropriate stocking rate to practice by the smallholder farmer.  相似文献   

7.
Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha?1 year?1 to 5.4 Mg C ha?1 year?1. Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0–96.3 ± 6.0 Mg C ha?1. Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha?1 year?1 and 45.8 ± 3.5 Mg C ha?1, respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha?1 year?1) and fertilizer use (63.6 kg Ce ha?1 year?1) for all sites totaled 254.3 kg Ce ha?1 year?1. Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year?1 under low management regimes and 7551.4 Gg Ce year?1 under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.  相似文献   

8.
Following turfgrass establishment, soils sequester carbon (C) over time. However, the magnitude of this sequestration may be influenced by a range of climatic and soil factors. Analysis of home lawn turfgrass soils throughout the United States indicated that both climatic and soil properties significantly affected the soil organic carbon (SOC) concentration and pool to 15-cm depth. Soil sampling showed that the mean annual temperature (MAT) was negatively correlated with SOC concentration. Additionally, a nonlinear interaction was observed between mean annual precipitation (MAP) and SOC concentration with optimal sequestration occurring in soils receiving 60–70?cm of precipitation per year. Furthermore, soil properties also influenced SOC concentration. Soil nitrogen (N) had a high positive correlation with SOC concentration, as a 0.1?% increase in N concentration led to a 0.99?% increase in SOC concentration. Additionally, soil bulk density (ρb) had a curvilinear interaction with SOC concentration, with an increase in ρb indicating a positive effect on SOC concentration until a ρb of ~1.4–1.5?Mg?m?3 was attained, after which, inhibition of SOC sequestration occurred. Finally, no correlation between SOC concentration or pool was observed with texture. Based upon these results, highest SOC pools within this study are observed in regions of low MAT, moderate MAP (60–70?cm?year?1), high soil N concentration, and moderate ρb (1.4–1.5?Mg?m?3). In order to maximize the C storage capacity of home lawns, non C-intensive management practices should be used to maintain soils within these conditions.  相似文献   

9.
Summary This paper evaluates the rates of organic carbon diminution in the soil under monospecific tree plantations of teak, gmelina, rubber, oil palm, cashew and coffee. The differences between the organic carbon status of their soils and soil under nearby natural rain forest vegetation are compared. Annual rates of organic carbon decrease for the 0–10 cm soil layer, varied from 82.1 kg ha–1 for cashew to 316.7 kg ha–1 for oil palm. The tree plantations appear to release more carbon dioxide from the soil into the atmosphere than the natural forest. They therefore, appear to have the potential of contributing towards global warming — a threat they are supposed to mitigate.  相似文献   

10.
Soils in the Mediterranean area are very prone to erosion due to the loss of organic matter and the consequent lack of protective vegetation. In this experiment a Mediterranean degraded soil with a 15% slope was amended at a rate of 250 t ha–1 wet weight with sewage sludge and with a mixture of sewage sludge and barley straw (70% carbon from sewage sludge and 30% from the straw) in order to study their influence on soil structure recovery and hence the soilss resistance to erosion processes. Both types of organic amendment led to an improvement in several soil properties (physical, biological, and microbiological) as a result of the spontaneous growth plant covering that became evident three months after amendment. This vegetation remained throughout the two years of the experiment and prevented the water erosion processes that normally precede soil degradation. Amendment by sewage sludge alone reduced soil loss by 80% compared with the control soil, while the mixture that included both sewage sludge and barley straw reduced losses by 84%, both reducing runoff by 57%. The amended soils showed increases in the percentage of stable aggregates, the levels of the total and water-soluble C fractions, microbial biomass C, basal respiration, and the activity of the different enzymes involved in the biogeochemical cycles of C, N, and P. The results confirm the usefulness of sewage sludge as an organic amendment for recovering damaged soils.  相似文献   

11.
The rice fields, depleted of O2, contain large amount of moisture and organic substrates to provide an ideal anaerobic environment for methanogenesis and are one of the principal anthropogenic sources of methane. In order to mitigate this emission Alternative Electron Acceptors (AEA) were altered in the soil. The experiments were carried out in four seasons at the site of Balarampur, near Baruipur, South 24 Parganas, West Bengal, namely September–December, 2005 (Cultivar: Sundari), February–May, 2006 (Cultivar: Sundari), September–December, 2006 and February–May, 2007 (Cultivar: Swarna-Pankaj). The seasonal average methane flux (Fe treated), for the cultivar type “Sundari” (season: September–December, 2005), is 4.41 t ha−1, as compared to the value of 6.40 t ha−1 for the untreated soil. Similarly for February–May, 2006, the seasonal average methane flux (Fe treated) is 5.52 t ha−1, whereas the untreated flux is 5.69 t ha−1. In the third and fourth seasons we had two treatments with Ammonium Thiosulphate and Ferric Hydroxide. The seasonal average methane flux (treatment: Ammonium Thiosulphate) is 4.35 t ha−1 and 5.41 t ha−1 respectively, whereas for the ferric hydroxide treated soil it is 4.35 t ha−1 and 6.14 t ha−1 respectively. The properties related to the nutrient quality of the harvested paddy seeds supplement these results.  相似文献   

12.
Extending livestock grazing to the steep slopes has led to unstable grazing systems in the East African Highlands, and new solutions and approaches are needed to ameliorate the current situation. This work was aimed at studying the effect of livestock grazing on plant attributes and hydrological properties. The study was conducted from 1996 to 2000 at the International Livestock Research Institute at Debre Ziet Research Station. Two sites were selected: one at 0–4% slope, and the other at 4–8% slope. The treatments were: (1) no grazing (control); (2) light grazing, 0.6 animal unit months per hectare (aum/ha); (3) moderate grazing, 1.8 aum/ha; (4) heavy grazing, 3.0 aum/ha; (5) very heavy grazing, 4.2 aum/ha; (6) initially plowed and continuously very heavily grazed, 4.2 aum/ha. The result showed that species richness, infiltration rate, bare ground, and soil loss significantly varied with grazing pressure. Species richness was higher in grazed plots compared to nongrazed plots. Biomass yield improved on heavily grazed plots as cow dung accumulated over years. Cynodon dactylon plant species persisted with livestock grazing pressure in both sites. Infiltration rate improved and soil erosion declined in all treatments after the first year.  相似文献   

13.
In the semiarid Horqin sandy land of northern China, establishment of artificial sand-fixing shrubs on desertified sandy lands is an effective measure to control desertification and improve the regional environment. Caragana microphylla Lam. and Artemisia halodendron Turcz. ex Bess. are two of the dominant native shrub species, which are adapted well to windy and sandy environments, and thus, are widely used in revegetation programs to control desertification in Horqin region. To assess the effects of artificially planting these two shrub species on restoration of desertified sandy land, soil properties and plant colonization were measured 6 years after planting shrubs on shifting sand dunes. Soil samples were taken from two depths (0–5 cm and 5–20 cm) under the shrub canopy, in the mid-row location (alley) between shrub belts, and from nonvegetated shifting sand dune (as a control). Soil fine fractions, soil water holding capacity, soil organic C and total N have significantly increased, and pH and bulk density have declined at the 0–5-cm topsoil in both C. microphylla and A. halodendron. At the 5–20 cm subsurface soil, changes in soil properties are not significant, with exception of bulk density and organic C concentration under the canopy of A. halodendron and total N concentration under the canopy of C. microphylla. Soil amelioration processes are initiated under the shrub canopies, as higher C and N concentrations were found under the canopies compared with alleys. At the same time, the establishment of shrubs facilitates the colonization and development of herbaceous species. A. halodendron proved to have better effects in fixing the sand surface, improving soil properties, and restoring plant species in comparison to C. microphylla.  相似文献   

14.
Carbon Sequestration in Dryland Ecosystems   总被引:8,自引:0,他引:8  
Drylands occupy 6.15 billion hectares (Bha) or 47.2% of the worlds land area. Of this, 3.5 to 4.0 Bha (57%–65%) are either desertified or prone to desertification. Despite the low soil organic carbon (SOC) concentration, total SOC pool of soils of the drylands is 241 Pg (1 Pg = petagram = 1015 g = 1 billion metric ton) or 15.5% of the worlds total of 1550 Pg to 1-meter depth. Desertification has caused historic C loss of 20 to 30 Pg. Assuming that two-thirds of the historic loss can be resequestered, the total potential of SOC sequestration is 12 to 20 Pg C over a 50-year period. Land use and management practices to sequester SOC include afforestation with appropriate species, soil management on cropland, pasture management on grazing land, and restoration of degraded soils and ecosystems through afforestation and conversion to other restorative land uses. Tree species suitable for afforestation in dryland ecosystems include Mesquite, Acacia, Neem and others. Recommended soil management practices include application of biosolids (e.g., manure, sludge), which enhance activity of soil macrofauna (e.g., termites), use of vegetative mulches, water harvesting, and judicious irrigation systems. Recommended practices of managing grazing lands include controlled grazing at an optimal stocking rate, fire management, and growing improved species. The estimated potential of SOC sequestration is about 1 Pg C/y for the world and 50 Tg C/y for the U.S. This potential of dryland soils is relevant to both the Kyoto Protocol under UNFCCC and the U.S. Farm Bill 2002.
  相似文献   

15.
Land-use change from one type to another affects soil carbon (C) stocks which is associated with fluxes of CO2 to the atmosphere. The 10-years converted land selected from previously cultivated land in hilly areas of Sichuan, China was studied to understand the effects of land-use conversion on soil organic casrbon (SOC) sequestration under landscape position influences in a subtropical region of China. The SOC concentrations of the surface soil were greater (P < 0.001) for converted soils than those for cultivated soils but lower (P < 0.001) than those for original uncultivated soils. The SOC inventories (1.90–1.95 kg m?2) in the 0–15 cm surface soils were similar among upper, middle, and lower slope positions on the converted land, while the SOC inventories (1.41–1.65 kg m?2) in this soil layer tended to increase from upper to lower slope positions on the cultivated slope. On the whole, SOC inventories in this soil layer significantly increased following the conversion from cultivated land to grassland (P < 0.001). In the upper slope positions, converted soils (especially in 0–5 cm surface soil) exhibited a higher C/N ratio than cultivated soils (P = 0.012), implying that strong SOC sequestration characteristics exist in upper slope areas where severe soil erosion occurred before land conversion. It is suggested that landscape position impacts on the SOC spatial distribution become insignificant after the conversion of cultivated land to grassland, which is conducive to the immobilization of organic C. We speculate that the conversion of cultivated land to grassland would markedly increase SOC stocks in soil and would especially improve the potential for SOC sequestration in the surface soil over a moderate period of time (10 years).  相似文献   

16.
The rise in aluminium demand in the world has significantly increased the generation of bauxite residue which occupies huge areas of land worldwide. Direct revegetation of residue storage areas has been unsuccessful because of the high alkalinity and salinity, and poor nutrient contents of the fine residue (red mud). This paper describes glasshouse and field experiments evaluating the potential use of sewage sludge as an organic ameliorant for gypsum amended red mud. The growth of Agropyron elongatum in red mud receiving gypsum (0 and 38.5 t ha−1) and sewage sludge (0, 38.5 and 77 t ha−1) amendment was assessed in a glasshouse study. Leachate and soil analyses revealed that gypsum was effective in reducing the pH, EC and ESP of red mud, while sewage sludge gave additional reductions in EC, Na and ESP. No evidence of any significant increases in heavy metal contents were observed in the leachates following sewage sludge amendment. However, soil Al contents were more available in red mud receiving only sewage sludge treatment. Sewage sludge amendment significantly increased dry weight yield and provided sufficient nutrients for plant growth except K which was marginal. No heavy metal accumulation was observed in Agropyron. Following that, a field experiment was performed having red mud amended with sewage sludge (38.5, 77 and 154 t ha−1) and gypsum (38.5 and 77 t ha−1) to evaluate their effects on soil physical properties of red mud. Sewage sludge significantly reduced soil bulk density (25%) and particle density (9%) and increased the total porosity of red mud (8%). Hydraulic conductivity also increased from 1.5 to 23 × 10−5 m s−1. Plant cover percentage and dry weight yield of Agropyron increased with an increase in gypsum and sewage sludge amendment. The results confirm that sewage sludge is effective in improving both soil structure and nutrient status of gypsum amended red mud. The use of sewage sludge for red mud revegetation provides not just an option for sludge disposal, but also a cost effective revegetation strategy for bauxite refining industry.  相似文献   

17.
Soil and plant characteristics of landfill sites near Merseyside,England   总被引:2,自引:0,他引:2  
An ecological survey of the plant and soil characteristics was carried out on three landfill sites near Merseyside, England. It was discovered that bare ground at two of the landfill areas had high levels of methane contained in the soil air (Sefton Meadows landfill: 6–8% at 35 cm and 16–35% at 65 cm below soil surface; Coalgate Lane landfill: 1–24% at 35 cm and 39–45% at 40 cm below soils surface), causing the appearance of dark grey reduced regions in the soil, a phenomenon similar to flooded soil. The wellvegetated areas at the two sites had lower levels of methane (under 7%).In areas relatively free of methane, the concentrations of mineralized N and NO3 had significant correlations with the dry weights of vegetation (r = 0.71 withp<0.01;r=0.61 withp<0.02 accordingly), indicating the necessity of applying available nitrogen fertilizer.  相似文献   

18.
The application of lime or liming materials to acid-soil grasslands might help mitigate soil acidity, a major constraint to forage productivity in many temperate mountainous grasslands. Nowadays, in these mountainous grasslands, it is essential to promote agricultural practices to increase forage yield and nutritive value while preserving biodiversity and agroecosystem functioning. Two different field experiments were conducted in the Gorbeia Natural Park, northern Spain: (i) one in a calcareous mountainous grassland (Arraba) and (ii) the other in a siliceous mountainous grassland (Kurtzegan) to study the effects of a single application of two liming products, i.e. 2429 kg lime (164.3% CaCO3) ha?1 and 4734 kg calcareous sand (84.3% CaCO3) ha?1, applied one month before the beginning of the sheep grazing season (May–October), on soil chemical (pH, organic C, total N, C/N ratio, %Al saturation, Olsen P, exchangeable K+ and Ca2+) and biological parameters (dehydrogenase, β-glucosidase, urease, acid phosphatase and arylsulphatase activity) as well as on botanical diversity (graminoids, forbs, shrubs) and forage yield and nutritive value (crude protein, modified acid detergent fibre, digestibility). Untreated control plots were also included in the experiment. Soil sampling was carried out at the end of the sheep grazing season (6 months after liming treatment), while botanical composition was determined one year after treatments application. Although no increase in soil pH was observed in Arraba, liming significantly increased dehydrogenase activity (an indicator of soil microbial activity) by 30.4 and 86.7% at Arraba and Kurtzegan site, respectively. Liming treatments significantly improved forage yield and nutritive value in Arraba but not in Kurtzegan. Furthermore, no differences in soil biological quality, evaluated using the “treated-soil quality index” as proposed in this work, were observed between treated and untreated soils, and between the two different lime treatments (lime, calcareous sand). It was concluded that, in acid-soil temperate mountainous grasslands, moderate liming treatments have no negative short-term effects either on soil quality or botanical composition, while resulting in improvements in forage yield and nutritive value under some conditions.  相似文献   

19.
Supplying freshwater is one of the important methods to help restore degraded wetlands. Changes in soil properties and plant community biomass were evaluated by comparing sites with freshwater treatment versus reference sites following freshwater addition to wetlands of the Yellow River Delta for 7 years. The results indicated that soil organic carbon (SOC) was significantly increased in all wetland sites that were treated with freshwater compared to the reference sites. The treatment wetlands had greater total nitrogen (TN), lower pH and electrical conductivity and higher water content in the soil compared to the reference wetlands. In general, the upper soil layer (0-20 cm) had greater SOC than the lower soil layer (20-40 cm). The increase of SOC in the freshwater reintroduction wetlands was higher in the Suaeda salsa plant community (mean ± standard error) (6.89 ± 0.63 g/kg) and Phragmites communis plant community (4.11 ± 0.12 g/kg) than in the Tamarix chinensis plant community (1.40 ± 0.31 g/kg) in the upper soil layer. The differences were especially marked between the treated and reference wetlands for SOC and TN in the P. communis plant communities. The C:N ratio of the soil was significantly greater in the treated compared to the reference wetlands for the S. salsa plant community. Although the C: N ratios increased after treatment, they were all <25 suggesting that N availability was not limiting soil organic matter decomposition. Our results indicate that freshwater addition and the concomitant increase in soil moisture content enhances the accumulation of SOC in the Yellow River Delta.  相似文献   

20.
Climate and land-use/cover changes (LUCC) influence soil erosion vulnerability in the semi-arid region of Alqueva, threatening the reservoir storage capacity and sustainability of the landscape. Considering the effect of these changes in the future, the purpose of this study was to investigate soil erosion scenarios using the Revised Universal Soil Loss Equation (RUSLE) model. A multi-agent system combining Markov cellular automata with multi-criteria evaluation was used to investigate LUCC scenarios according to delineated regional strategies. Forecasting scenarios indicated that the intensive agricultural area as well as the sparse and xerophytic vegetation and rainfall-runoff erosivity would increase, consequently causing the soil erosion to rise from 1.78 Mg ha?1 to 3.65 Mg ha?1 by 2100. A backcasting scenario was investigated by considering the application of soil conservation practices that would decrease the soil erosion considerably to an average of 2.27 Mg ha?1. A decision support system can assist stakeholders in defining restrictive practices and developing conservation plans, contributing to control the reservoir's siltation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号