首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late larvae of the serranid coral trout Plectropomus leopardus (Lacepède), captured in light traps, were released during the day both in open water and adjacent to two reefs, and their behaviour was observed by divers at Lizard Island, northern Great Barrier Reef. Coral trout larvae (n = 110) were present in light-trap catches from 18 November to 3 December 1997, including new moon (30 November). The swimming speed of larvae in open water or when swimming away from reefs was significantly greater (mean 17.9 cm s−1) than the speed of larvae swimming towards or over reefs (mean 7.2 cm s−1). Near reefs, larvae swam at average depths of 2.7 to 4.2 m, avoiding 0 to 2 m. In open water, swimming depth varied with location: larvae >1 km east of Lizard Island swam steeply downward to >20 m in 2 to 4 min; larvae >1 km west oscillated between 2.6 and 13 m; larvae 100 to 200 m east of Lizard Island oscillated between 0.8 and 15 m. Nearly all larvae swam directionally in open water and near reefs. In open water, the average swimming direction of all larvae was towards the island, and 80% (4 of 5) swam directionally (p < 0.05, Rayleigh's test). Larvae swam directionally over the reef while looking for settlement sites. The frequency of behaviours by larvae differed between two reefs of different exposure and morphology. Depending on site, 26 to 32% of larvae released adjacent to reefs swam to open water: of these, some initially swam towards or over the reef before swimming offshore. In some cases, offshore-swimming seemed to be due to the presence of predators, but usually no obvious cause was observed. Depending on the reef, 49 to 64% of the larvae settled. Non-predatory reef residents aggressively approached 19% of settlers. Between 5 and 17% of the larvae were eaten while approaching the reef or attempting to settle, primarily by lizardfishes but also by wrasses, groupers and snappers. A higher percentage of larvae settled in the second week of our study than in the first. Average time to settlement was short (138 s ± 33 SE), but some larvae took up to 15 min to settle. Average settlement depth was 7.5 to 9.9 m, and differed between locations. No settlement took place on reef flats or at depths <4.2 m. Larvae did not appear to be selective about settlement substrate, but settled most frequently on live and dead hard coral. Late-stage larvae of coral trout are capable swimmers with considerable control over speed, depth and direction. Habitat selection, avoidance of predators and settlement seem to rely on vision. Received: 7 July 1998 / Accepted: 26 January 1999  相似文献   

2.
The post-release behaviour of eight black marlin (Makaira indica), caught by standard sportfishing techniques off the Great Barrier Reef, Australia, was investigated using ultrasonic telemetry. Five marlin between 100 and 420 kg were successfully tracked for periods of 8 to 27 h. Of the three others tagged, one was killed by a shark and two shed their tags, probably as the result of poor attachment. The black marlin spent most of their time within 10 m of the surface, both day and night. During the day, however, they also spent some time between 40 and 140 m depth. They rarely penetrated the thermocline, and then only briefly, remaining at temperatures no more than 8 C° below that of surface waters. The deepest dives were to 178 m. Four of the five marlin tracked, initially moved offshore before heading parallel to the shore, whereas the other marlin stayed close to the reef edge. The average mean swimming speeds over the ground for entire tracks ranged from 0.7 to 1.02 m s−1. Received: 17 January 1997 / Accepted: 16 June 1999  相似文献   

3.
We used acoustic telemetry to examine the small-scale movement patterns of yellowfin tuna (Thunnus albacares) in the California Bight at the northern extent of their range. Oceanographic profiles of temperature, oxygen, currents and fluorometry were used to determine the relationship between movements and environmental features. Three yellowfin tuna (8 to 16 kg) were tracked for 2 to 3 d. All three fish spent the majority of their time above the thermocline (18 to 45 m in depth) in water temperatures >17.5 °C. In the California Bight, yellowfin tuna have a limited vertical distribution due to the restriction imposed by temperature. The three fish made periodic short dives below the thermocline (60 to 80 m), encountering cooler temperatures (>11 °C). When swimming in northern latitudes, the depth of the mixed layer largely defines the spatial distribution of yellowfin tuna within the water column. Yellowfin prefer to spend most of their time just above the top of the thermocline. Oxygen profiles indicated that the tunas encountered oceanic water masses that ranged most often from 6.8 to 8.6 mg O2 l−1, indicating no limitation due to oxygen concentrations. The yellowfin tuna traveled at speeds ranging from 0.46 to 0.90 m s−1 (0.9 to 1.8 knots h−1) and frequently exhibited an oscillatory diving pattern previously suggested to be a possible strategy for conserving energy during swimming. Received: 14 February 1997 / Accepted: 14 April 1997  相似文献   

4.
Six Pacific bluefin tuna were tracked with ultrasonic telemetry and two with pop-up satellite archival tags (PSATs) in the eastern Pacific Ocean in 1997, 1998, and 1999. Both pressure and temperature ultrasonic transmitters were used to examine the behavior of the 2- to 4-year-old bluefin tuna. The bluefin spent over 80% of their time in the top 40 m of the water column and made occasional dives into deeper, cooler water. The mean slow-oxidative muscle temperatures of three fish instrumented with pressure and temperature transmitters were 22.0–26.1 °C in water temperatures that averaged 15.7–17.5 °C. The thermal excesses in slow-oxidative muscle averaged 6.2–8.6 °C. Variation in the temperature of the slow-oxidative muscle in the bluefin was not correlated with water temperature or swimming speeds. For comparison with the acoustic tracking data we examined the depth and ambient temperature of two Pacific bluefin tagged with pop-up satellite archival tags for 24 and 52 days. The PSAT data sets show depth and temperature distributions of the bluefin tuna similar to the acoustic data set. Swimming speeds calculated from horizontal distances with the acoustic data indicate the fish mean speeds were 1.1–1.4 fork lengths/s (FL s−1). These Pacific bluefin spent the majority of their time in the top parts of the water column in the eastern Pacific Ocean in a pattern similar to that observed for yellowfin tuna. Received: 4 April 2000 / Accepted: 25 October 2000  相似文献   

5.
The pattern and characteristics of diving in 14 female northern rockhopper penguins, Eudyptes chrysocome moseleyi, were studied at Amsterdam Island (37°50′S; 77°31′E) during the guard stage, using electronic time–depth recorders. Twenty-nine foraging trips (27 daily foraging trips and two longer trips including one night) with a total of 16 572 dives of ≥3 m were recorded. Females typically left the colony at dawn and returned in the late afternoon, spending an average of 12 h at sea, during which they performed ∼550 dives. They were essentially inshore foragers (mean estimated foraging range 6 km), and mainly preyed upon the pelagic euphausiid Thysanoessa gregaria, fishes and squid being only minor components of the diet. Mean dive depth, dive duration, and post-dive intervals were 18.4 m (max. depth 109 m), 57 s (max. dive duration 168 s), and 21 s (37% of dive duration), respectively. Descent and ascent rates averaged 1.2 and 1.0 ms−1 and were, together with dive duration, significantly correlated with dive depth. Birds spent 18% of their total diving time in dives reaching 15 to 20 m, and the mean maximum diving efficiency (bottom time:dive cycle duration) occurred for dives reaching 15 to 35 m. The most remarkable feature of diving behaviour in northern rockhopper penguins was the high percentage of time spent diving during daily foraging trips (on average, 69% of their time at sea); this was mainly due to a high dive frequency (∼44 dives per hour), which explained the high total vertical distance travelled during one trip (18 km on average). Diving activity at night was greatly reduced, suggesting that, as other penguins, E. chrysocome moseleyi are essentially diurnal, and locate prey using visual cues. Received: 9 December 1998 / Accepted: 3 March 1999  相似文献   

6.
Six Greenland sharks, Somniosus microcephalus (Bloch and Schneider, 1801), 190–355 cm fork length, were tracked under land-fast sea ice off northern Baffin Island (73.2°N; 85.3°W) between 16 and 28 May 1999, using ultrasonic telemetry. The sharks were tracked continuously for periods of 5.5–13.0 h, with the tracks of two individuals lasting 31.4 and 42.8 h, respectively, each with an interval when the track was lost. Several sharks dove after release and moved along the ocean bottom for the duration of the tracking period, while others varied their movements regarding course and depth. Two sharks made repeated visits to within 11 m of the ice–water interface from deeper water. The tracked sharks exhibited no apparent depth or temperature preferences, and pooled data indicated that sharks remained deep during the morning and gradually moved into shallower depths through the afternoon and night. Rates of descent (average=0.099 m s–1) were significantly greater than rates of ascent (average=0.058 m s–1) for all sharks, and the average rate of horizontal movement over ground was estimated as 0.215 m s–1. Based on the movements of tracked sharks and information contained in the literature, S. microcephalus may prey on seals in areas covered by land-fast sea ice.Communicated by J.P. Grassle, New Brunswick  相似文献   

7.
S. T. Larned 《Marine Biology》1998,132(3):409-421
Recent investigations of nutrient-limited productivity in coral reef macroalgae have led to the conclusion that phosphorus, rather than nitrogen, is the primary limiting nutrient. In this study, comparison of the dissolved inorganic nitrogen:phosphorus ratio in the water column of Kaneohe Bay, Hawaii, with tissue nitrogen:phosphorus ratios in macroalgae from Kaneohe Bay suggested that nitrogen, rather than phosphorus, generally limits productivity in this system. Results of nutrient-enrichment experiments in a flow-through culture system indicated that inorganic nitrogen limited the growth rates of 8 out of 9 macroalgae species tested. In 6 of the species tested, specific growth rates of thalli cultured in unenriched seawater from the Kaneohe Bay water column were zero or negative after 12 d. These results suggest that, in order to persist in low-nutrient coral reef systems, some macroalgae require high rates of nutrient advection or access to benthic nutrient sources in addition to nutrients in the overlying water column. Nutrient concentrations in water samples collected from the microenvironments inhabited or created by macroalgae were compared to nutrient concentrations in the overlying water column. On protected reef flats, inorganic nitrogen concentrations within dense mats of Gracilaria salicornia and Kappaphycus alvarezii, and inorganic nitrogen and phosphate concentrations in sediment porewater near the rhizophytic algae Caulerpa racemosa and C. sertularioides were significantly higher than in the water column. The sediments associated with these mat-forming and rhizophytic species appear to function as localized nutrient sources, making sustained growth possible despite the oligotrophic water column. In wave-exposed habitats such as the Kaneohe Bay Barrier Reef flat, water motion is higher than at protected sites, sediment nutrient concentrations are low, and zones of high nutrient concentrations do not develop near or beneath macroalgae, including dense Sargassum echinocarpum canopies. Under these conditions, macroalgae evidently depend on rapid advection of low-nutrient water from the water column, rather than benthic nutrient sources, to sustain growth. Received: 1 December 1997 / Accepted: 9 July 1998  相似文献   

8.
L. Dagorn  P. Bach  E. Josse 《Marine Biology》2000,136(2):361-371
 The horizontal and vertical movements of large bigeye tuna (Thunnus obesus Lowe, 1839; 25 to 50 kg) captured in the south Pacific Ocean (French Polynesia) were determined using pressure-sensitive ultrasonic transmitters. Bigeye tuna swam within the first 100 m below the surface during the night-time and at depths between 400 and 500 m during the daytime. The fish exhibited clear relationships with the sound scattering layer (SSL). They followed its vertical movements at dawn and dusk, and were probably foraging on the organisms of the SSL. Bigeye tuna did, however, make regular rapid upward vertical excursions into the warm surface layer, most probably in order to regulate body temperature and, perhaps, to compensate for an accumulated oxygen debt (i.e. to metabolize lactate). The characteristics of these dives differ from those reported from previous studies on smaller bigeye tuna (∼12 kg) near the main Hawaiian Islands. During the daytime, the large fish in French Polynesia made upward excursions approximately only every 2.5 h, whereas smaller fish in Hawaiian waters made upward excursions approximately every hour. Our data are the first observations on the role of body size in the vertical behavior of bigeye tuna. Received: 9 September 1998 / Accepted: 25 November 1999  相似文献   

9.
N. Choe  D. Deibel 《Marine Biology》2000,137(5-6):847-856
The vertical distribution and population dynamics of the chaetognath Parasagitta elegans Verrill were determined in the water column and hyperbenthic zone of Conception Bay, Newfoundland from April 1997 to June 1998. The water column depth at the study site (47°32.2′N; 53°07.9′W) was 235 m. The temperature below the thermocline was <0 °C the year round. Chaetognath samples from the water column were collected with a Tucker Trawl. Those from the hyperbenthic zone, were collected with an epibenthic sledge. Depending upon whether the hyperbenthic zone was assumed to extend either 1 m or 10 m above bottom, the grand mean, areal abundance of chaetognaths in the hyperbenthic zone ranged from 6% to 40% of the total abundance in the water column (including the hyperbenthic zone), and the grand mean, areal biomass ranged from 25% to 77%. Large, mature individuals were collected only in the hyperbenthic zone, whereas small, immature individuals were collected primarily in the water column. According to body length and ovary maturity data, three cohorts were identified in the hyperbenthic zone during the study period. Within each cohort, the length frequency of reproductively mature individuals was bimodal, with groups of mean length 33 mm and 41 mm reproducing from May to October. The recruitment period of juvenile chaetognaths extended from July to February, coinciding with the recruitment period of copepods. The estimated individual growth rate of P. elegans was 1.0 mg C year−1. The approximate generation time of the two groups of individuals with mean length at maturity of 33 mm and 41 mm was 450 and 780 days, respectively. This study demonstrates that a failure to sample the large, mature P. elegans living in the hyperbenthic zone leads to serious underestimates of the total abundance and biomass of chaetognaths and an inaccurate picture of seasonal population dynamics. Received: 8 September 1999 / Accepted: 15 September 2000  相似文献   

10.
European lobsters, Homarus gammarus (L.), were tracked on an artificial reef in Poole Bay on the south coast of England using an electromagnetic telemetry system which monitored movements between reef units and recorded body movements (pitching and rolling) detected with a tilt switch incorporated into the transmitting tag. Several environmental variables (water temperature, light, hydrostatic pressure, current velocity and direction) were recorded simultaneously by the telemetry system, which was self-contained on the seabed. Movements between units of the artificial reef (excursions outside shelter) were predominantly nocturnal, peaking 1.5 to 3 h after sunset and returning to low levels shortly before dawn. A marked decline in the number of inter-reef unit movements from late summer to winter was related to decreasing water temperature rather than to daytime light level, wave height or tidal range. Activity indicated by the tilt switch was also greater at night, but declined gradually from a peak early in the night to a minimum at around midday, on average, implying a degree of activity within reef units during daylight. As with movements between reef units, activity declined seasonally with decreasing water temperature; in addition, the diel pattern of activity disappeared in winter. Received: 9 February 1998 / Accepted: 24 July 1998  相似文献   

11.
Ultrasonic, depth-sensitive transmitters were used to track the horizontal and vertical movements, for up to 48 h, of 11 adult (136 to 340 kg estimated body mass) North Atlantic bluefin tuna (Thunnus thynnus Linnaeus). Fish were tracked in October 1995, September and October 1996, and August and September 1997 in the Gulf of Maine, northwestern Atlantic. The objective was to document the behavior of these fish and their schools in order to provide the spatial, temporal, and environmental information required for direct (i.e. fishery-independent) assessment of adult bluefin tuna abundance using aerial surveys. Transmitters were attached to free-swimming fish using a harpoon attachment technique, and all fish remained within the Gulf of Maine while being followed. Most of the bluefin tuna tagged on Stellwagen Bank or in Cape Cod Bay (and followed for at least 30 h) held a predominately easterly course with net horizontal displacements of up to 76 km d−1. Mean (±SD) swimming depth for all fish was 14 ± 4.7 m and maximum depth for individuals ranged from 22 to 215 m. All but one fish made their deepest excursions, often single descents, at dawn and dusk. In general, adult bluefin tuna spent <8% of their time at the surface (0 to 1 m), <19% in the top 4 m, but >90% in the uppermost 30 m. Mean (±SD) speed over ground was 5.9 km h−1, but for brief periods surpassed 20 to 31 km h−1. Sea surface temperatures during tracking were 11.5 to 22.0 °C, and minimum temperatures encountered by the fish ranged from 6.0 to 9.0 °C. Tagged bluefin tuna and their schools frequented ocean fronts marked by mixed vertebrate feeding assemblages, which included sea birds, baleen whales, basking sharks, and other bluefin schools. Received: 19 July 1999 / Accepted: 25 March 2000  相似文献   

12.
The seasonal productivity cycle and factors controlling annual variation in the timing and magnitude of the winter–spring bloom were examined for several locations (range: 42°20.35′–42°26.63′N; 70°44.19′–70°56.52′W) in Boston Harbor and Massachusetts Bay, USA, from 1995 to 1999, and compared with earlier published data (1992–1994). Primary productivity (mg C m−2 day−1) in Massachusetts Bay from 1995 to 1999 was generally characterized by a well-developed winter–spring bloom of several weeks duration, high but variable production during the summer, and a prominent fall bloom. The bulk of production (mg C m−3 day−1) typically occurred in the upper 15 m of the water column. At a nearby Boston Harbor station a gradual pattern of increasing areal production from winter through summer was more typical, with the bulk of production restricted to the upper 5 m. Annual productivity in Massachusetts Bay and Boston Harbor ranged from a low of 160 g C m−2 year−1 to a high of 787 g C m−2 year−1 from 1992 to 1999. Mean annual productivity was higher (mean=525 g C m−2 year−1) and more variable near the harbor entrance than in western Massachusetts Bay. At the harbor station productivity varied more than 3.5-fold (CV=40%) over an 8 year sampling period. Average annual productivity (305–419 g C m−2 year−1) and variability around the means (CV=25–27%) were lower at both the outer nearfield and central nearfield regions of Massachusetts Bay. Annual productivity in 1998 was unusually low at all three sites (<220 g C m−2 year−1) due to the absence of a winter–spring phytoplankton bloom. Potential factors influencing the occurrence of a spring bloom were investigated. Incident irradiance during the winter–spring period was not significantly different (P > 0.05) among years (1995–1999). The mean photic depth during the bloom period was significantly deeper (P < 0.05) in 1998, signifying greater light availability with depth. Nutrients were also in abundance during the winter–spring of 1998 with stratified conditions not observed until May. In general, the magnitude of the winter–spring bloom in Massachusetts Bay from 1995 to 1999 was significantly correlated with winter water temperature (r 2=0.78) and zooplankton abundance (r 2=0.74) over the bloom period (typically February–April). The absence of the 1998 bloom was associated with higher than average water temperature and elevated levels of zooplankton abundance just prior to, and during, the peak winter–spring bloom period. Received: 3 July 2000 / Accepted: 6 December 2000  相似文献   

13.
C. Krembs  A. Engel 《Marine Biology》2001,138(1):173-185
The distribution and abundance of transparent exopolymer particles (TEP) was determined in and below pack ice of the Laptev Sea from July to September 1995. Samples were collected from the lowermost 10 cm of ice floes and at 10 cm below the ice–water interface. Abundance of bacteria, protists and TEP was determined, and the sea ice–water boundary layer was characterized using temperature, salinity and molecular viscous shear stress. TEP, with a distinct size distribution signal, were found in highest concentrations inside the sea ice, ranging from not detectable to 16 cm2 l−1 (median: 2.9 cm2 l−1). In the water, concentrations were one order of magnitude lower, ranged from below detection to 2.7 cm2 l−1 (median: 0.2 cm2 l−1) and decreased after the middle of August, whereas abundances of autotrophic flagellates (AF), diatoms, heterotrophic flagellates (HF) and ciliates increased. The abundance of TEP decreased with its size in all samples following a power law relationship. The relation of TEP to the microbial community differed between the sea ice and water, being positively correlated with bacteria and diatoms in the ice and negatively correlated with HF in the sea water. The presence of a pycnocline significantly influenced the abundance of organisms, diatom composition and TEP concentrations. Pennate diatoms dominated by Nitzschia frigida were most abundant inside the ice. Though bacteria have the potential to produce exopolymeric substances (EPS), the results of this study indicate that the majority of TEP at the ice–water interface in first-year Arctic summer pack ice are produced by diatoms. Received: 19 August 1999 / Accepted: 4 July 2000  相似文献   

14.
The biology of symbiotic scleractinians is profoundly influenced by their intracellular zooxanthellae, and many studies have focused on the mechanistic basis of this influence. This has usually been accomplished by examining the metabolism of zooxanthellae under physical conditions measured in the open reef and assumed to be similar to conditions in hospite. Recent advances in the measurement of conditions near and within coral tissue suggests that this assumption may result in substantial errors. To address this possibility, the role of water flow in determining oxygen saturation adjacent to the tissue of Dichocoenia stokesii was investigated, and the effect of these measured oxygen saturations on the respiration and photosynthesis of zooxanthellae isolated from the same species was quantified. Using a microelectrode (700 μm diam), we measured oxygen saturations above (≤4 mm) the tissue in two flow speeds over 24 h periods in a flume receiving sunlight at in situ levels. The results were used as a proxy for ecologically relevant intracellular oxygen saturations, which were applied to zooxanthellae in vitro to assess their effect on symbiont metabolism. Microenvironment oxygen saturations (% air saturation) ranged from 74–159% in slow flow (2.7 cm s−1) to 88–110% in faster flow (7.5 cm s−1) over day–night cycles. Therefore, the metabolic rates of zooxanthellae were measured at 50 to 54% (hypoxia), 98 to 102% (normoxia) and 146 to 150% (hyperoxia) oxygen saturation. Oxygen saturation significantly affected the metabolism of zooxanthellae, with gross photosynthesis increasing 1.2-fold and dark respiration increasing 2-fold under hyperoxia compared to hypoxia. These results suggest that the metabolism of zooxanthellae in hospite is affected markedly by their microenvironment which, in turn, is influenced by flow-mediated mass transfer. Received: 13 July 1998 / Accepted: 30 April 1999  相似文献   

15.
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths, rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny. In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot larvae was 10−5M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour is discussed. Received: 12 June 1997 / Accepted: 13 January 1998  相似文献   

16.
The growth (extension rate, number of radial branches, skeletal mass, branch diameter) of the␣staghorn coral Acropora formosa (Dana, 1846) was examined at four sites on the Beacon Island platform at Houtman Abrolhos, in subtropical Western Australia (28°S). Sites were at depths of 7 to 11 m, with variable exposure to weather and swell conditions. Two sites on the western reef slope were partly exposed to the oceanic swell, and two sites in the lagoon were largely protected from wave action. Linear extension rate between 1994 and 1995 varied significantly between sites, with greater linear extension at the more protected lagoonal sites. However, accumulation of skeletal mass per branch and number of newly initiated radial branches did not vary significantly between the sites. Carbonate was deposited in similar amounts, but either as porous, rapidly extending branches, or as denser branches which extended more slowly. Branch extension rate over 11.5 mo ranged from a mean of 50.3 mm (range=13 to 93 mm) at a reef slope site to a mean of 76.0 mm (range=31 to 115 mm) at a sheltered lagoonal site. Mean extension rates were almost twice that previously reported for this species in Houtman Abrolhos (37 to 43 mm yr−1) from a shallower site where environmental conditions were apparently sub-optimal. Growth was within the range reported for A. formosa from tropical sites, which is consistent with the relatively high calcification and reef-accretion rates recorded for Houtman Abrolhos in geological and metabolic studies. The role of reduced coral growth-rate in limiting coral reef formation at high latitudes remains equivocal. Received: 19 November 1997 / Accepted: 5 May 1998  相似文献   

17.
Water samples from six bays were taken over a 5-year period (1988 to 1992) to determine the distribution and abundance of loricate choanoflagellates in coastal Newfoundland, and to assess the impact that these organisms might have on this cold ocean food web. Scanning electron microscopy was used to study the morphology of these flagellates, allowing us to identify 11 species of loricate choanoflagellates. Parvicorbicula socialis (Meunier) Deflandre was the most abundant species (80 × 103 cells l−1), particularly during the spring diatom bloom. Single-cell species, such as Bicosta spini fera (Throndsen) Leadbeater and Calliacantha natans (Grontved) Leadbeater, were found more commonly after the spring diatom bloom in the summer months. Many of the single-cell choanoflagellates were attached to bacteria-rich microaggregates and debris in the water column and in unpoisoned sediment traps. The P. socialis cell flux was calculated to be 5.3 × 106 cells m−2 d−1 in late May sediment traps. P. socialis in the upper 100 m of the water column was removing 0.3% of the standing crop of bacteria each day (April/May), and the equivalent of 7.4% of the daily bacterial production over the water column. Diel studies of P. socialis in Conception Bay suggest that the sharp decline in population numbers observed in midnight samples may be related to the high number of grazing zooplankton observed during the same period. Pelagic tunicate and zooplankton fecal pellets were found to contain large numbers of choanoflagellate costae, thus providing a direct link from the microbial loop to the macrozooplankton. Received: 17 March 1997 / Accepted: 9 May 1997  相似文献   

18.
The extent to which the American lobster, Homarus americanus (H. Milne-Edwards), utilizes estuarine habitats is poorly understood. From 1989 to 1991 we examined lobster movements in and around the Great Bay estuary, New Hampshire using tag/recapture and ultrasonic telemetry. A total of 1212 lobsters were tagged and recaptured at sites ranging from the middle of Great Bay, 23.0 km from the coast, to Isles of Shoals, 11.2 km offshore. Twenty-six lobsters equipped with ultrasonic transmitters were tracked for periods ranging from 2 weeks to >1 year. Most lobsters moved <5 km toward the coast, with those furthest inland moving the greatest distance. Lobsters with transmitters moved in a sporadic fashion, with residency in one area for 2 to 4 weeks alternating with rapid movement to a new location (mean velocity = 0.3 km d−1, 1.8 km d−1 max.). Site of release influenced distance moved, but there was no significant relationship between lobster size and distance traveled, days at large, or rate of movement. Most movement into the estuary occurred in the spring, while during the remainder of the year there was a strong tendency to move downriver, toward the coast. These seasonal migrations of estuarine lobsters may enhance their growth and survival by enabling them to avoid low salinity events in the spring and fall, and to accelerate their growth in warmer estuarine waters during the summer. Received: 26 January 1996 / Accepted: 22 January 1999  相似文献   

19.
Acoustic telemetry was used to examine patterns of activity and space utilisation of coelacanths, nocturnal predators which spend the day in submarine caves. Nine coelacanths (Latimeria chalumnae) were tracked, each for a period of 1 to 16 nights at Grande Comore, West Indian Ocean. Activities lasted on average 9 h, usually starting shortly after sunset and ending before sunrise. Vertically, coelacanths moved up and down at and below cave level by following the bottom contour, mainly between 180 and 400 m depth. The deepest record was 698 m, the shallowest 133 m. Most time was spent between 200 and 300 m depth. Large individuals performed deep excursions to depths below 400 m, usually once per night. The fish spent most time in water temperatures of 15 to 19 °C; they rarely ventured into waters warmer than 22 °C measured at depths shallower than 160 m depth. Horizontally, coelacanths stayed in narrow areas ranging from <1 to 10 km of coastline. Coelacanths are extremely slow drift-hunters with an estimated average swimming speed of 3.2 m min−1, often travelling not more than 3 km per night. They probably take advantage of local upwelling and downwelling and slow currents occurring parallel to the steep slopes. This study shows that coelacanths are inhabitants of the subphotic zone, where they are active mainly below the depth of their daytime refuges. Received: 7 July 1999 / Accepted: 11 February 2000  相似文献   

20.
 Early development of the Antarctic sea urchin Sterechinus neumayeri was examined under two differ-ent culture regimes: one to simulate development near-bottom (“demersal development”) and the other to simulate the development of embryos in the water column (“pelagic development”). When embryos of both treatments reached the hatching blastula stage at 5 d post-fertilization (−1.5 °C), the blastulae that had undergone demersal development evidenced significant differences (by ANOVA or suitable non-parametric comparison) in the following: a thicker blastoderm layer (12%, P < 0.001), higher ash-free dry weights (19%, P < 0.01), lower mass-specific respiration rates (50%, P < 0.001), higher incorporation rates of 35S-methionine into protein (23%, P < 0.003), and a differential pattern of protein synthesis. When embryos developed demersally, they remained in the jelly-coat material released with the eggs at spawning. Quantitative isolation of this jelly-coat material in S. neumayeri demonstrated that it contained a significant amount of organic matter, 115 ng ash-free dry mass per egg, equivalent to 17% of the egg's initial organic mass. Uptake of external nutrients during embryogenesis may be a significant component of the physiological energetics of this polar invertebrate by allowing the utilization of jelly-coat material released by a female during spawning. Received: 21 April 1999 / Accepted: 5 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号