首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以天然沸石颗粒、高锰酸钾、硫酸锰为原料,通过常温氧化还原沉淀法制备δ-MnO_2/沸石纳米复合材料,用于同时去除地下水中铁锰氨氮.扫描电镜(SEM)、透射电镜(TEM)、Zeta电位、红外光谱(FTIR)和X射线光电子能谱(XPS)表征负载锰氧化物和吸附离子的存在形态,探讨δ-MnO_2/沸石对Fe~(2+)、Mn~(2+)和NH_4~+-N的吸附机制.通过静态无/低氧水处理实验研究了δ-MnO_2/沸石对Fe~(2+)、Mn~(2+)和NH_4~+-N的吸附性能.结果表明,沸石表面负载的锰氧化物为δ-MnO_2;复合材料对3种离子的吸附符合准二级动力学,吸附等温曲线符合Langmuir模型,最大饱和吸附容量可分别达到215. 1、23. 6和7. 64mg·g-1;水中氨氮去除机制是沸石对NH_4~+的优先选择性离子交换吸附;水中Fe~(2+)和Mn~(2+)的去除是沸石颗粒表面负载δ-MnO_2的吸附和催化氧化作用.研究表明δ-MnO_2/沸石纳米复合材料可以作为一种高效吸附剂同时去除水中的Fe~(2+)、Mn~(2+)和NH_4~+-N离子.  相似文献   

2.
为了深入了解液/固体系Cu~(2+)、Zn~(2+)、Mn~(2+)在硅藻土表面的吸附行为与特性,为硅藻土在含重金属离子废水处理上的应用提供充分的理论依据,采用静态吸附试验对Cu~(2+)、Zn~(2+)、Mn~(2+)在硅藻土表面的吸附条件、性能、行为与特性进行了系统的研究.结果表明,硅藻土投加量和离子初始浓度对硅藻土吸附Cu~(2+)、Zn~(2+)、Mn~(2+)的影响均可归结为液/固比(液相离子与硅藻土的质量比)的影响,过高或过低的液固比均不利于吸附,硅藻土吸附Cu~(2+)、Zn~(2+)、Mn~(2+)所需的最佳液/固比分别为0.025、0.100和0.100.溶液初始pH值对硅藻土吸附Cu~(2+)、Zn~(2+)、Mn~(2+)的影响主要与溶液初始pH值与硅藻土等电点(2.0)之间的距离有关,接近或低于硅藻土等电点都不利于吸附,过高的pH值会使Cu~(2+)、Zn~(2+)、Mn~(2+)发生沉淀,也不利于吸附,硅藻土吸附Cu~(2+)、Zn~(2+)、Mn~(2+)所需的最适溶液初始pH值区间分别为4.0~6.0、4.0~7.0和4.0~7.0.溶液温度对硅藻土吸附Cu~(2+)、Zn~(2+)、Mn~(2+)的液膜扩散、颗粒扩散和吸附反应3个过程的影响不一致,导致对吸附量的影响无明显规律.硅藻土对Cu~(2+)、Zn~(2+)、Mn~(2+)的吸附分别符合Langmuir、Tenkin、Freundlish等温吸附模型,以物理吸附为主,吸附反应容易进行,在40 min达到平衡,吸附容量(25℃时)理论值分别为4.335、23.031、3.844 mg·g~(-1).吸附是自发的、吸热的、无序性增加,符合二级动力学模型.吸附速率的控制步骤为发生在孔道内部的吸附反应.  相似文献   

3.
文章研究了高锰酸钾氧化-吸附去除饮用水中Mn~(2+)的相关机理,考察了高锰酸钾氧化Mn~(2+)的产物新生态水合MnO_2对Mn~(2+)的吸附效能以及吸附前后体系p H的变化,并且对MnO_2的界面特性及结构形貌进行了表征。结果表明,体系中Mn~(2+)的平衡浓度在50 mg/L时,新生态水合MnO_2对Mn~(2+)的吸附量为1.46 g/g,静态吸附24 h后溶液p H从7.40降至3.74。XPS光电子能谱以及FTIR傅里叶红外光谱数据表明新生态水合MnO_2主要通过配位吸附实现对Mn~(2+)的去除。SEM显示新生态水合MnO_2为不均的准球形,表面富有皱褶,其比表面积可达214.6 m~2/g,吸附后样品表面光滑整齐。高锰酸钾对Mn~(2+)的氧化和MnO_2的吸附作用是Mn~(2+)从水中去除的原因。  相似文献   

4.
制备高温焙烧改性底泥作为吸附剂,采用静态吸附试验来研究其吸附废水中重金属Mn~(2+)的效果。分别对高温焙烧改性底泥吸附重金属Mn~(2+)的影响因素(Mn~(2+)的质量浓度、吸附时间、p H、吸附剂的投加量)及吸附动力学进行研究。结果表明:改性底泥吸附Mn~(2+)的浓度为10 mg/L、平衡时间为130 min、p H为中性偏酸(范围4~7)、投加量为30 g/L时效果最佳,并对数据进行拟合且符合Langmuir和Freundlich吸附等温方程,但拟合效果更好地符合Freundlich吸附等温方程。在高温焙烧改性底泥对Mn~(2+)的吸附阶段用伪一级吸附动力学方程和伪二级吸附动力学方程进行拟合,其结果表明吸附过程更好地遵循伪二级吸附动力学方程,表明以化学吸附为主,对Mn~(2+)的平衡吸附量为11.560 7 mg/g。  相似文献   

5.
响应面法优化胡敏素对Cu2+的吸附及机理研究   总被引:1,自引:1,他引:0  
采用Box-Behnken响应面优化实验设计对胡敏素吸附去除水中Cu~(2+)的过程进行了优化,设定吸附时间、吸附剂用量、pH、温度和Cu~(2+)初始浓度为5个影响因素,Cu~(2+)吸附率为响应值,建立了吸附率与上述因素之间的二次多项式模型,确定最佳吸附条件,对吸附过程的等温模型及吸附机理进行了研究.响应面分析表明,吸附剂用量、pH和Cu~(2+)初始浓度是显著因素.胡敏素对Cu~(2+)吸附的最佳条件为:吸附时间110 min、吸附剂用量2.4 g·L~(-1)、pH=5.4、温度25.0℃、Cu~(2+)初始浓度208 mg·L~(-1).在该条件下,测得胡敏素对Cu~(2+)的吸附率可达到80.78%,吸附符合Langmuir等温线方程.胡敏素表面疏松多孔,有利于其通过物理吸附方式吸附Cu~(2+),同时,胡敏素表面的羟基、羧基和羰基等活性基团可以与Cu~(2+)发生配位络合作用,Na+、Ca~(2+)、Mg~(2+)等与Cu~(2+)发生离子交换作用,从而发生化学吸附.研究结果表明,胡敏素作为一种绿色、高效、廉价的吸附剂,可应用于Cu~(2+)污染废水的治理.  相似文献   

6.
超痕量锰的催化光度法测定   总被引:2,自引:0,他引:2  
催化动力学法测定痕量锰,已有报道。经实验表明,在氨三乙酸活化作用下,Mn~(2+)对高碘酸钾氧化耐尔蓝的褪色反应,具有强烈的催化作用。因而,可以间接测定Mn~(2+)。其间接摩尔吸光系数为6.0×10~6L·mol~(-1)·cm~(-1);检测限为0.05mg/l。本法用于测定地下水、地面水中的Mn~(2+)及环境标准样品,均获得满意结果。实验部分一、仪器及试剂 (一)仪器 721型分光光度计; DMS-200uv分光光度计,美国瓦里安公司生产; 恒温器及秒表等。 (二)试剂 Mn~(2+)标准溶液将浓度为0.5mg/ml标准贮备液,逐渐稀释成Mn~(2+)浓度为0.01μg/ml的标准使用液; pH5.0的醋酸——醋酸钠缓冲溶液;  相似文献   

7.
为探讨固液体系中限氧裂解法制备粟米秸秆生物炭对Pb~(2+)的吸附特性与机理,通过静态批量试验研究了pH、初始离子浓度、吸附剂投加量、吸附时间对粟米秸秆炭吸附Pb~(2+)特性的影响,并通过热力学分析其吸附作用机理。结果表明,粟米秸秆炭对Pb~(2+)吸附在pH为5.5~6.0范围内效果最好,其吸附能力与温度和离子浓度正相关,与吸附剂投加量负相关。粟米秸秆炭对Pb~(2+)吸附反应满足Lagergren准二级动力学模型,Langmuir模型拟合等温吸附过程结果较好。扫描电镜和傅里叶红外光谱对材料吸附前后分析表明,粟米秸秆在炭化和吸附Pb~(2+)后的表面形态发生改变,羟基和羧基等表面活性基团在该吸附过程中起主要作用。  相似文献   

8.
观察耐辐射奇球菌(Deinococcusradiodurans)R1在不同作用条件下对溶液中Mn~(2+)的清除作用,为进一步研究R1清除放射性废水中的Mn~(2+)奠定基础。采用原子吸收分光光度法分析了作用时间、温度、pH值、初始接菌浓度和初始Mn~(2+)浓度对R1菌清除溶液中Mn~(2+)的影响。结果显示,活的R1菌对Mn~(2+)的有较好的清除效果,而死R1菌对Mn~(2+)没有清除能力;作用时间(0.5~48 h)对Mn~(2+)的清除率影响不大,相对较适作用时间为2~4 h,随着环境温度增高,R1菌对溶液中Mn~(2+)的清除率增加,相对较适温度为30~45℃时;p H低于4不利于R1对Mn~(2+)的清除,p H 5~10时,对R1菌清除Mn~(2+)影响不大,最适p H值为5~8;初始Mn~(2+)浓度相同时,加入R1量越多,清除率越高,但单位质量的R1对Mn~(2+)的吸附量越少;初始R1量相同时,加入Mn~(2+)浓度越高,清除率越低,最后随着Mn~(2+)浓度增高,R1清除Mn~(2+)的能力达到饱和,R1对Mn~(2+)的饱和清除量为1.35 mg/g。结果表明,在适当的温度和p H环境中,活的R1菌在较短作用时间内对溶液中Mn~(2+)就有较好的清除作用(>90%),R1菌在放射性核素污染防治方面具有潜在的应用前景。  相似文献   

9.
以Mn~(2+)浓度为10 mg/L的配水来模拟锰矿区受污染水体,研究KMn O4预氧化与混凝组合工艺对Mn~(2+)的去除效果。考察了KMn O4投加量、预氧化时间、混凝剂种类、混凝剂投加量以及水力条件等因素对Mn~(2+)去除的影响,并得出最佳反应条件。在最佳反应条件下,Mn~(2+)的去除率可以达到99.9%。当Mn~(2+)浓度为10 mg/L时,KMnO_4的投加量为15 mg/L,该投加量仅为理论投加量的78.3%,这是因为生成的MnO_2对Mn~(2+)有吸附作用。对于初始Mn~(2+)浓度在4~14 mg/L范围内的水体,按照78.3%的当量投加,处理后的Mn~(2+)出水浓度均低于0.1 mg/L。当溶液p H在6~8.5之间变化时,溶液p H对Mn~(2+)的去除和浊度几乎没有影响。当配水浊度在0~50 NTU之间变化时,出水浊度均低于1.5 NTU。实验证明该方法对于实际受锰污染的水体同样有效。  相似文献   

10.
采用Box-Behnken响应面优化实验设计对胡敏素吸附去除水中Pb~(2+)的过程进行了优化,设定吸附时间、吸附剂用量、pH值、温度和Pb~(2+)初始浓度5个影响因素,建立了吸附率与上述因素之间的二次多项式模型,确定了最优吸附条件,对吸附过程的等温模型、热力学特性及吸附机理进行了研究.研究表明吸附剂用量、pH值、温度和Pb~(2+)初始浓度为显著因素.胡敏素对Pb~(2+)吸附的最优条件为:吸附时间85min、投加量1.2g/L、pH=4.7、温度44.5℃、Pb~(2+)初始浓度202mg/L.最优条件下,实测Pb~(2+)吸附率可达92.59%.胡敏素对Pb~(2+)的吸附符合Langmuir等温线方程,最大吸附量为170.28mg/g;计算得知胡敏素吸附Pb~(2+)的热力学状态函数ΔG~0、ΔS~0和ΔH~0分别为-29.30~-24.21k J/mol、126.70J/(mol·K)和13.59k J/mol,吸附过程为吸热过程.胡敏素表面的羰基、羟基、氨基和羧基等活性基团可以和Pb~(2+)发生配位络合作用,Ca、Na和Mg等离子与Pb~(2+)发生离子交换作用.研究结果表明,胡敏素作为一种极具潜力的绿色廉价吸附剂,可用于处理含Pb~(2+)废水.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号