首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
柴油车尾气碳烟颗粒物催化燃烧催化剂的最新研究进展   总被引:2,自引:0,他引:2  
柴油车尾气排放的碳烟颗粒已经引起了严重的环境污染问题,必须加以净化处理.柴油车碳烟颗粒的低温燃烧离不开高活性的催化剂.针对柴油车排放的碳烟颗粒物后处理方法中的催化氧化技术,总结了近年来几种主要类型的碳烟燃烧催化剂(贵金属催化剂、碱金属催化剂、单组分过渡金属氧化物催化剂、多组分混合氧化物催化剂和固定结构复合氧化物催化剂)的最新研究进展,并对该研究方向存在的主要问题和应用前景进行了探讨.  相似文献   

2.
Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine.

Implications: Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.  相似文献   


3.
Han Y  Cao J  An Z  Chow JC  Watson JG  Jin Z  Fung K  Liu S 《Chemosphere》2007,69(4):526-533
The IMPROVE thermal/optical reflectance (TOR) method, commonly used for EC quantification in atmospheric aerosols, is applied to soils and sediments and compared with a thermochemical method commonly applied to these non-atmospheric samples. TOR determines elemental carbon (EC) by an optical method, but it also yields thermally defined EC fractions in a 2% O2/98% He oxidizing atmosphere at 550 degrees C (EC1), 700 degrees C (EC2), and 800 degrees C (EC3). Replicate TOR TC, OC, and EC values exhibited precisions of approximately +/-10% as determined from multiple analyses of the same samples. EC abundances relative to total mass concentrations were within the ranges reported by other methods for diesel exhaust soot, n-hexane soot, wood and rice chars, and coals, as well as for environmental matrices. A direct comparison with the chemothermal (CTO) method of Gustafson et al. for ten soil and sediment samples demonstrated that almost all of the OC and EC1 are eliminated, as is part of the EC2. The CTO soot carbon is bounded by the EC3 and EC2+EC3 fractions of the IMPROVE TOR analysis. It might be possible to adjust these fractions to obtain better agreement between atmospheric aerosol and soil/sediment analysis methods. Given its linking the EC measurement in the atmosphere to sediments, the TOR method will not only provide useful information on the explanation and comparison between different environmental matrices, but also can be used to derive information on global cycling of EC.  相似文献   

4.
As an alternative and renewable fuel, biodiesel can effectively reduce diesel engine emissions, especially particulate matter and dry soot. However, the biodiesel effects on emissions may vary as the source fuel changes. In this paper, the performance of five methyl esters with different sources was studied: cottonseed methyl ester (CME), soybean methyl ester (SME), rapeseed methyl ester (RME), palm oil methyl ester (PME) and waste cooking oil methyl ester (WME). Total particulate matter (PM), dry soot (DS), non-soot fraction (NSF), nitrogen oxide (NOx), unburned hydrocarbon (HC), and carbon monoxide (CO) were investigated on a Cummins ISBe6 Euro III diesel engine and compared with a baseline diesel fuel. Results show that using different methyl esters results in large PM reductions ranging from 53% to 69%, which include the DS reduction ranging from 79% to 83%. Both oxygen content and viscosity could influence the DS emission. Higher oxygen content leads to less DS at high load while lower viscosity results in less DS at low load. NSF decreases consistently as cetane number increases except for PME. The cetane number could be responsible for the large NSF difference between different methyl esters.  相似文献   

5.
The sources and distribution of carbon in ambient suspended particles (PM2.5 and PM10) of Mexico City Metropolitan Area (MCMA) air were traced using stable carbon isotopes (13C/12C). Tested potential sources included rural and agricultural soils, gasoline and diesel, liquefied-petroleum gas, volcanic ash, and street dust. The complete combustion of LP gas, diesel and gasoline yielded the lightest δ13C values (?27 to ?29‰ vs. PDB), while street dust (PM10) represented the isotopically heaviest endmember (?17‰). The δ13C values of rural soils from four geographically separated sites were similar (?20.7 ± 1.5‰). δ13C values of particles and soot from diesel and gasoline vehicle emissions and agricultural soils varied between ?23 and ?26‰. Ambient PM samples collected in November of 2000, and March and December of 2001 at three representative receptor sites of industrial, commercial and residential activities had a δ13C value centered around ?25.1‰ in both fractions, resulting from common carbon sources. The predominant carbon sources to MCMA atmospheric particles were hydrocarbon combustion (diesel and/or gasoline) and particles of geological origin. The significantly depleted δ13C values from the industrial site reflect the input of diesel combustion by mobile and point source emissions. Based on stable carbon isotope mass balance, the carbon contribution of geological sources at the commercial and residential sites was approximately 73% for the PM10 fraction and 54% for PM2.5. Although not measured in this study, biomass-burning emissions from nearby forests are an important carbon source characterized by isotopically lighter values (?29‰), and can become a significant contributor (67%) of particulate carbon to MCMA air under the prevalence of southwesterly winds. Alternative sources of these 13C-depleted particles, such as cooking fires and municipal waste incineration, need to be assessed. Results show that stable carbon isotope measurements are useful for distinguishing between some carbon sources in suspended particles to MCMA air, and that wind direction has an impact on the distribution of carbon sources in this basin.  相似文献   

6.
A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric chemistry.  相似文献   

7.
Scanning electron microscopy, surface area determination, elemental analysis, organic matter extraction and solid-state cross polarization/magic angle spinning and Bloch decay/magic angle spinning 13C nuclear magnetic resonance (NMR) spectroscopy were used to investigate distinctive features among carbonaceous combustion residues. Black carbon (BC) samples included diesel soot, urban dust, carbon black, chimney soot, vegetation fire residues, wood and straw charcoals. Particles varied from small spheres (<50 nm) in fossil BC (>100 m(2)/g), to large layered structures in plant-derived BC (generally <8 m(2)/g). Chimney soot also included large (>1 micrometer) liquid-like structures, while spherules >100 nm were unique to urban dust. The ratios of amorphous to soot carbon (SC) (isolated by thermal degradation) were not necessarily correlated with the degree of aromaticity estimated from H/C ratios. In particular, values of SC in diesel soot were clearly overestimated. Solvent-extractable organic matter (SEOM) was <2% for charcoals and carbon black, but >13% for urban dust, chimney and diesel soot. SEOM is thought to clog pores or to form large waxy globules, hence reducing surface areas. The ratio of polar/nonpolar SEOM was generally <7 for fossil BC, but >30 for plant-derived BC. NMR analysis revealed essentially one chemical shift in the aromatic C region of charcoals, while diesel soot also showed important aliphatic contributions. Aliphatic and oxygenated C predominated over aryl C in urban dust and chimney soot. These morphological and chemical characteristics of the BC samples are discussed in terms of their environmental implications.  相似文献   

8.
The morphology of three different detonation soot samples along with other common soot materials such as carbon black, diesel soot and chimney soot was studied by elemental and proximate analysis, X-ray diffraction and electron microscopy. The goal of this study was to better define the morphology of the detonation soot in order to better assess the interactions of this type of soot with explosive residues. The detonation soot samples were obtained by the detonation of artillery 155mm projectiles filled with either pure TNT (2,4,6-trinitrotoluene) or composition B, a military explosive based on a mixture of TNT and RDX (trimethylentrinitramine). The carbon content of the soot samples varied considerably depending on the feedstock composition. Detonation soot contains less carbon and more nitrogen than the other carbonaceous samples studied, due to the molecular structure of the energetic materials detonated such as TNT and RDX. The ash concentration was higher for detonation soot samples due to the high metal content coming from the projectiles shell and to the soil contamination which occurred during the detonation. By X-ray diffraction, diamond and graphite were found to be the major crystalline carbon forms in the detonation soot. Two electron microscopy techniques were used in this study to visualise the primary particles and to try to explain the formation mechanism of detonation soot samples.  相似文献   

9.
Diesel particulate matter poses a threat to human health, and in particular nitrated polycyclic aromatic hydrocarbons (NPAHs) found within and on the surface of these particles. Although diesel particulate filters (DPFs) have been designed and implemented to reduce these and other harmful diesel emissions, the particle loaded filters may act as a reaction chamber for the enhanced production of NPAHs from the nitration of PAHs with NO2.Focus is on the investigation of the heterogeneous reactions that occur on soot particles by exposing laboratory produced pyrene- or benzo(a)pyrene-coated spark discharge soot particles to varying concentrations of NO2 and temperatures while following the formation of products over time. The sole nitration product that was observed throughout the experiments with pyrene-coated soot was 1-nitropyrene (1-NPYR), which increased linearly with reaction time for all NO2 concentrations chosen (0.11, 1.0, 2.0, 4.0 ppm, m m?1). Resulting 1-NPYR formation rate increased exponentially with [NO2]. Throughout the 3-h experiments less than 10% of pyrene has been converted to 1-NPYR and the partial reaction order with regard to [NO2] was estimated to 1.52. Benzo(a)pyrene (BaP) was more reactive than pyrene. After 3 h reaction time almost 80% of the BaP has been converted to 6-NBaP.Highest 1-NPYR concentrations on particles were detected at 373 K, and at higher temperatures a considerable decrease in particulate 1-NPYR was observed. A similar trend was observed in a DPF simulation system (PM-Kat®-like) with BaP-coated soot. In this case, highest 6-NBaP concentration on particles was detected at 423 K. Backed by corroborating results from separate gas/solid-phase partition experiments with 1-NPYR and 6-NBaP, it is likely that the newly formed 1-NPYR and 6-NBaP became transferred from particle to gas phase at higher temperatures. Results from this study confirm the presence of 1-NPYR and 6-NBaP in particulate and gas phase under conditions encountered in DPFs, especially when operated at low temperature situations of the aftertreatment system.  相似文献   

10.
The environmental occurrence of hexabromocyclododecane in Sweden   总被引:6,自引:0,他引:6  
The brominated flame retardant hexabromocyclododecane (HBCD) is extensively used in Europe, but data on the environmental concentrations of this chemical are scarce. A first screening has been performed concerning the environmental occurrence of HBCD in Sweden, a country where the chemical is not produced and the current industrial use is very limited. Possible emission sources were identified through a systematic analysis of the use in a life cycle perspective. In addition to a few point sources, diffuse emissions from polymeric products are possible. Measurements have been performed close to certain possible point sources, in the urban environment and in remote regions, and included air, deposition, water, soil, sediments, sludge, biota and foodstuffs. HBCD was detected in all media analysed and in all environments. The relatively high concentrations detected in herring and foodstuffs provide evidence for bioaccumulation of HBCD. The presence of HBCD in remote background air implies that HBCD has potential for long-range atmospheric transport. There are also some indications that diffuse emissions of HBCD occur in the urban environment.  相似文献   

11.
Stable isotopic tracers were used in Roanoke, Virginia, to tag particulate emissions from diesel trucks and residential oil furnaces, two sources of soot and PAHs which cannot be differentiated on the basis of known constituents. Approximately 1.6 g of enriched 149Sm were used to tag 264 m3 of diesel fuel burned by the city bus and truck fleets; 0.39 g of 150Sm were used to tag 106 m3 of residential heating oil. Picogram amounts of the tracers were determined simultaneously by thermal-ionization mass spectrometry in fine particles collected within the city at signal-to-noise ratios as large as 6000. These results demonstrate the feasibility of tracing particles from multiple combustion sources with stable, separated isotopes.  相似文献   

12.
The burning of kerosene in jet turbines is investigated for two reference flights with a Boeing 747-400 and an Airbus A320-200, representing the typical Lufthansa planes for long and middle distance. The ecological evaluation is performed by Life Cycle Assessment (LCA). Formation of condensation trails, which is a specific environmental impact caused by air traffic, has to be considered in addition to established LCA impact categories. Based on the ecological assessment, an improvement assessment is performed. Environmental performance of diesel fuel during the combustion in car engines is analysed based on available publications. The relevant parameters for the environmental impact of the combustion of diesel (aromatics content, reduction of sulphur content, the reduction of the density and raising of the cetane number) are discussed with regard to improvements of the exhaust qualities of kerosene. A reduction of the aromatics content promises to improve the emission of soot which should be further investigated.  相似文献   

13.
《Environmental Forensics》2013,14(3):191-197
To determine whether polycyclic aromatic hydrocarbons (PAHs) in household soot were derived from the combustion of scrap wood or creosote that was impregnated in the wood (or some combination of both), the molecular composition and radiocarbon ( 14 C) content of the total carbon and several PAHs in the soot was investigated. The 5730-year half-life of 14 C makes it an ideal marker for identifying creosote-derived PAHs ( 14 C-free) versus those derived from the combustion of wood (contemporary 14 C). The 14 C abundance of phenanthrene, fluoranthene, pyrene, and retene was determined by accelerator mass spectrometry after solvent extraction and purification by preparative capillary gas chromatography. The molecular analysis (presence of retene and 1,7-dimethylphenanthrene) and bulk 14 C content (contemporary) of the soot indicated that wood combustion was a strong source of carbon to the soot. The 14 C of retene in two soot samples was also contemporary, indicating that it was derived from the combustion of the scrap wood. These results are consistent with previous work that has suggested that retene is an excellent marker of wood combustion. However, the 14 C content of phenanthrene, fluoranthene, and pyrene in one soot sample was much lower and revealed that these compounds had a mixed creosote and wood source. Using an isotopic mass balance approach, we estimate that 40 to 70% of phenanthrene, fluoranthene, and pyrene were derived from the combustion of the scrap wood. The results of this study show that molecular marker and bulk 14 C analysis can be potentially misleading in apportioning sources of every PAH, and that molecular-level 14 C analysis of PAHs can be a powerful tool for environmental forensics.  相似文献   

14.
Heterogeneous chemical processes involving trace atmospheric gases with solid particulates, such as carbonaceous aerosol, are not well understood. In an effort to quantify some relevant carbon aerosol systems, the heterogeneous chemistry of NO2 with both commercial and freshly prepared hexane soot was investigated in an atmospheric reaction chamber. At approximately an atmosphere of total pressure (760 Torr) and under dry conditions (relative humidities⩽1%), kinetic measurements gave an uptake coefficient of (2.4±0.6)×10−8 for n-hexane soot when referenced to the BET surface area of the sample. Commercial carbon black samples were found to yield a similar uptake coefficient. The reaction of HNO3 with commercial carbon black was also investigated and gas phase NO2 was detected as a reaction product. Low-pressure Knudsen cell experiments were carried out to facilitate a quantitative comparison between the two different techniques. The agreement between our current results and previously reported values of the uptake coefficient, with different soot samples and under varied pressure and surface coverage conditions, are discussed along with the possible implications for atmospheric chemistry.  相似文献   

15.
BACKGROUND, AIM, AND SCOPE: High SO(2) concentrations as have been observed over decades in the Ruhr district lead to a remarkable reduction of leaf area in the majority of the characteristic broad-leafed herbs of the Central European beech forests even after only a few months of experimental fumigation. Thus, it is no wonder in the time of high SO(2) pollution, e.g., in the town of Herne (centre of the Ruhr district), that there was not a single beech forest hosting, for instance, Viola reichenbachiana or Anemone nemorosa. As air quality has improved very much over some decades in the Ruhr district, one can expect a recolonisation of the beech forests by the species of former time characteristic for the herb layer. However, one has to consider that only the air pollution was reduced, while soil acidification and contamination with heavy metals and PAH are, on the short run, irreversible. That is why experiments were carried out, considering the question as to whether recolonisation of the forests of the Ruhr district by the aforementioned species is possible and why such a recolonisation up to now has not occurred. MATERIALS AND METHODS: The experiments were carried out in a beech forest situated in the centre of the Ruhr district in the City of Herne. The wood anemone (A. nemorosa) was chosen as test plant because of its high frequency in beech forests on loess soils outside the Ruhr district, and its absence in beech forests in the Ruhr district. The experiments with A. nemorosa were carried out in three variants with different soils: (a): soil of the local forests (R); (b): soil of the local forests whose soot layer was removed (r); (c): imported soil from a clean air region far away from the Ruhr district (Odenwald). RESULTS: Survival of rhizomes of A. nemorosa is possible for some years in the soils of the Ruhr district; however, the establishment of a population could not be achieved. The results obtained by the imported soil show that it is no longer air pollution, but the soil which prevents the establishment of a population. Sexual reproduction is rather impossible because of the thick litter layer with which all of the Ruhr district's beech forests are covered. DISCUSSION: With respect to the unfavourable chemistry of the soil of the Ruhr district and in consideration of the unfavourable attributes of the soot layer, the author expected the following order of the development of shoot numbers: O > r > R. However, the result is: O > R > r. In contrast to the expected result, the soot layer has no negative but slightly positive effects on the implanted rhizomes. A possible explanation is that the soot layer, which is situated immediately below the top soil, prevents the top soil from drying up and thus even protects the rhizomes from desiccation. Also, the possibility has to be considered that the soot layer functions as a nutrient storage area. CONCLUSIONS: At present, a survival of the rhizomes of A. nemorosa in the soils of the Ruhr district is temporarily possible but does not lead to the establishment of a permanent population. This only can be achieved by additional sexual reproduction. However, the thick litter layer present in all beech forests of the Ruhr district prevents the establishment of seedlings, i.e., it does not allow sexual reproduction to contribute to the population. The soot layer situated below the litter layer represents a second hindrance for germination. Other than seedlings, rhizomes are not negatively affected by the soot layer but even a slight stabilisation has to be stated. As a reason for this slightly positive effect, a protection of the upper mineral soil from desiccation by the hydrophob soot layer has to be considered. Secondly, the soot layer may serve as a nutrient storage which is of particular importance in acid soils, because acidification generally leads to a leeching of nutrients. To answer these questions, detailed further research is necessary. RECOMMENDATIONS AND PERSPECTIVES: In order to restore the formerly rich herbaceous layer of the forests of the Ruhr district, experiments (removal of the litter layer; liming; ploughing) should be carried out at broad-scale to solve the question of how the strong negative effects of the established thick raw humus layer can be reduced or even be avoided. When the problem of the humus layer is solved, the beech forests of the Ruhr district today highly impoverished in species will become a vivid ecosystem, rich in flowering herbaceous species and thus much more attractive for the people of the Ruhr district than at present.  相似文献   

16.
Recent data collected in the Arctic have demonstrated the transport of atmospheric aerosol of anthropogenic origin into that region. Concern over the radiative effect of the highly-absorbing soot component of this aerosol has resulted in a variety of atmospheric sampling efforts aimed at assessing the climatic impact of this component. However, little attention has been given to the measurement of soot deposited on the Arctic snowpack and the resulting perturbation of snow albedo, snowmelt rates and radiative transfer. Here we report measurements of light-absorbing material in the Arctic snowpack for longitudes from 25 E to 160 W. The contributions to light absorption due to natural crustal and soot aerosol are identified by their wavelength dependence. Reductions in Arctic snow albedo of one to several percent appear probable for the soot/ice mass fractions obtained to date. Estimates of the impact of this reduced albedo on the Arctic radiation budget over a season are shown to approximately equal that of the Arctic haze itself. The absorption of shortwave radiation by the springtime snowpack is estimated to be 5–10 % higher than that of soot-free snow for this data.  相似文献   

17.
Formate species in the low-temperature oxidation of dimethyl ether   总被引:2,自引:0,他引:2  
The oxidation of dimethyl ether (DME, 340 ppm in 10% O2) has been studied experimentally in an atmospheric pressure laminar flow reactor in the temperature range from 240 degrees C to 700 degrees C for residence times in the range 2-4 s. The influence of nitric oxide additions up to 620 ppm to the feed gases has also been investigated. Products of reaction were determined by FTIR. In the absence of NO, reaction is first detected at about 260 degrees C. The products in the low-temperature region include formaldehyde (HCHO), and formic acid (HCOOH). The addition of NO leads to the appearance of methyl formate (CH3OCHO). While the overall behaviour of the system can be explained qualitatively in terms of typical low-temperature hydrocarbon ignition, recently published chemical kinetic models for DME ignition do not allow for the formation of these formate species. We find no experimental evidence for the formation of hydroperoxymethyl formate (HPMF, HOOCH2OCHO) which is predicted by the models to be a significant stable intermediate at temperatures below 350 degrees C. Since both formic acid and methyl formate have potentially harmful health effects, these observations may have significant implications for use of DME as a diesel fuel.  相似文献   

18.
A procedure is demonstrated that greatly expands the number of sources whose contribution to ambient particle levels can be followed separately within an aerosol processes trajectory model without significantly increasing the computational burden of the problem. Particles emitted from different sources within the same general class can be differentiated from each other with this technique; for example particles emitted by on-road diesel vehicles can be distinguished from particles emitted by diesel railroad locomotives, and particles emitted from identical sources at different locations can be distinguished from each other as well. The method developed is illustrated by application to the air quality situation in Southern California. The contributions of more than 50 types of air pollution sources to primary particle concentrations at Claremont, CA, are separated from each other by post-processing the output from the aerosol processes trajectory model for an externally mixed aerosol developed previously by Kleeman and Cass (1998, Atmospheric Environment 32, 2803–2816; 1999 Environmental Science and Technology, 33, 177–189).  相似文献   

19.

Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  相似文献   

20.
Recent data collected in the Arctic have demonstrated the transport of atmospheric aerosol of anthropogenic origin into that region. Concern over the radiative effect of the highly-absorbing soot component of this aerosol has resulted in a variety of atmospheric sampling efforts aimed at assessing the climatic impact of this component. However, little attention has been given to the measurement of soot deposited on the Arctic snowpack and the resulting perturbation of snow albedo, snowmelt rates and radiative transfer. Here we report measurements of light-absorbing material in the Arctic snowpack for longitudes from 25 E to 160 W. The contributions to light absorption due to natural crustal and soot aerosol are identified by their wavelength dependence. Reductions in Arctic snow albedo of one to several percent appear probable for the soot/ice mass fractions obtained to date. Estimates of the impact of this reduced albedo on the Arctic radiation budget over a season are shown to approximately equal that of the Arctic haze itself. The absorption of shortwave radiation by the springtime snowpack is estimated to be 5–10% higher than that of soot-free snow for this data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号