首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The concentrations of particulate organic matter were measured from May to September 1998 in urban area of Algiers and in municipal waste landfill of Oued Smar. For the sake of comparability, organic aerosols were also monitored at Montelibretti (Italy) in June of the same year. In addition to n-alkanes and polycyclic aromatic hydrocarbons (PAH), monocarboxylic n-alkanoic acids accounted for a large portion of identified organic compounds of aerosol at both Algerian sites. All these species were more abundant at Oued Smar than in downtown Algiers. At the urban site, concentration levels reached by n-alkanes and PAH highlighted the strong impact of motor vehicle emission resulting over the city area. Instead, at the Oued Smar landfill n-alkane and PAH contents depended upon the nature and account of the wastes burnt, and their behaviours were consistent with a pyrolytic origin. n-Alkanoic acids rather originated from the bacterial activity. By contrast, n-alkanes and n-alkanoic acids at Montelibretti seemed to be released by biogenic sources, whereas PAH presence was related to downwind transport of air parcels from Rome metropolitan area.  相似文献   

2.
n-Alkanes were present in the northern Wisconsin atmosphere in both the particulate and vapor state. Partitioning was operationally defined by a high-volume sampling methodology which used a glass fiber filter to separate particles and vapor. Concentrations, distributions and vapor/particle partitioning were seasonally dependent. Total n-alkane (C11-C32) concentrations in the vapor phase ranged from 25 to 75 ng m−3. Vapor concentrations of n-alkanes within the range C11-C17 were greatest during winter. Total n-alkane (C11-C32) concentrations in the particulate phase varied from 5.1 to 35 ng m−3 while those of the odd-numbered n-alkanes within the range C25-C31 ranged from 3.1 to 31 ng m−3. Highest concentrations of these n-alkanes were observed during spring and early summer. The CPI (20–32) of particulate n-alkanes was highest during spring (13.0) and early fall (8.0). The highest total n-alkane concentration and CPI (20–32) occurred in spring during a period of pine pollen disposal. A high-boiling unresolved complex mixture (UCM) was prominent in particles collected during winter, while a low-boiling UCM was typical of vapor collected during summer.  相似文献   

3.
Total concentrations and homologue distributions of organic fraction constituents have been determined in particulate matter emitted from different units of a fat manufacturer (i.e. oils refining and conditioning plants, and production and conditioning units of a soap industry) located in Algiers area, as well as in atmospheric aerosols. In particular n-alkanes, n-alkanoic and n-alkenoic acids, n-alkan-2-ones and polycyclic aromatic hydrocarbons (PAH) were investigated. Organic aerosol contents varied broadly among the plant units, depending upon nature of the manufactured products. The percent composition of all classes of compounds investigated in ambient atmosphere was similar to those observed indoor at industrial plant units. Organic acids, n-alkanoic as well as n-alkenoic, appeared by far the most abundant organic constituents of aerosols, both indoor and outdoor, ranging from 7.7 to 19.8 and from 12.7 to 17.1 μg m−3, respectively. The huge occurrence of acids and n-alkanes in ambient aerosols was consistent with their high levels present in oil and fat materials. Among minor components of aerosols, n-alkan-2-ones and PAH, seemed to be related to thermally induced ageing and direct combustion of raw organic material used for oil and soap production.  相似文献   

4.
Polycyclic organic material (POM) was collected by high-volume sampling on filter and on XAD-2 resin from the air of a small industrial town in Finland. Concurrent chemical analysis and the assays for genotoxic activity were performed on the particulate and the vapour phases of ambient air POM and their chemical fractions. Furthermore, correlations between seasonal meteorological parameters and POM concentrations were studied to reveal characteristic POM profiles for various emission sources. The range of total POM concentrations varied from 115 to 380 ng m−3 in late spring and from 17 to 83 ng m−3 in early winter. No direct correlation of ambient POM was seen with the temperature, but rather with the wind direction from various emission sources. Especially the low molecular weight compounds were associated with wind direction from industrial sources. Genotoxic activity, as detected by the Ames Salmonella/microsome test and the SCE assay in CHO cells, was found not only in the paniculate phase samples but also in the vapour phase. The polar fractions of some of the samples showed genotoxic activity, and also direct mutagenicity was observed with both the assay systems; these facts support the significance of compounds other than conventional polycyclic aromatic hydrocarbons (PAH) in the samples.  相似文献   

5.
In this study, we present the analysis of functional groups of humic-like substances (HULIS) isolated from atmospheric aerosols (<1 μm). Aerosol samples were collected in an urban area (Dübendorf, Switzerland) both in summer and winter. Quantification of carboxylic, arylic, phenolic and aliphatic functional groups of HULIS was performed by a specially adapted and optimized H-NMR method. The concentrations of carboxylic, arylic, phenolic and aliphatic functional groups were between 9×10−11 and 6×10−8 mol/m3 for all samples, corresponding up to 14% of the total HULIS mass. A good correlation between the H-NMR results and the potentiometric titration of carboxylic groups was observed for all winter and summer samples. The pK distributions of carboxylic groups of HULIS were calculated from potentiometric titration data. pK spectra showed that pK values of most carboxylic groups is between 3 and 5. The H-NMR data show that the content of aromatic groups is higher in winter than in summer. This may either be due to emission of aromatic compounds by wood burning or to slower degradation reaction of aromatics in winter.  相似文献   

6.
The aim of the current study was to measure polycyclic aromatic hydrocarbons (PAHs) in eight indoor (In both kitchen and living room) air sampling locations using a passive sampling method for collection. Passive outdoor air samples were also collected from 3 of the same sampling locations as the indoor air sampling sites. Sampling was conducted in three seasons. The summer season, when windows are generally open, was between 18th July and 01st September, 2014; the autumn and winter seasons, when windows are mostly closed, was between 18th October and 01st December, 2014, and 01st December, 2014, and 18th January, 2015, respectively.

Average PAH concentrations in summer were 22 ± 21 ng/m3 and 17 ± 12 ng/m3 in the living room and kitchen, respectively, whereas living room and kitchen average PAH concentrations were 23 ± 16 ng/m3 and 20 ± 9 ng/m3, respectively, in autumn and 23 ± 13 ng/m3 and 23 ± 24 ng/m3, respectively, in winter. Outdoor air PAH concentrations in summer, autumn and winter were 7 ± 0.4 ng/m3, 22 ± 13 ng/m3 and 209 ± 33 ng/m3, respectively. An increase in outdoor PAH concentrations was measured in winter compared to the concentrations in summer and autumn, which paralleled the lower outdoor air temperature. However, PAH concentrations in the indoor environment vary according to the household characteristics and personal habits.  相似文献   


7.
The wintertime concentrations and diel cycles of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to atmospheric particulate matter with aerodynamic diameter lesser than 10 μm were determined at the biggest student residence in Algeria located in Bab-Ezzouar, 15 km southeast from Algiers city area. Samplings were carried out from December 2009 to March 2010, and organic compounds were characterized using gas chromatography coupled with mass spectrometric detection. Volatile PAHs were also monitored inside some student residence rooms in order to evaluate the impact of indoor air pollution to student health. For the sake of comparison, aerial concentrations of n-alkanes and PAHs were determined in parallel in the Oued Smar industrial zone and two suburban areas, all located in Algiers. Total concentrations recorded in CUB1 student residence ranged from 101 to 204 ng?m?3 for n-alkanes and from 8 to 87 ng?m?3 for PAHs. Diel cycles have shown that, while concentrations of n-alkanes peaked at morning and afternoon–evening and dropped at night, those of PAHs exhibited higher levels at morning and night and lower levels at afternoon–evening, likely due to the reactivity of some PAHs. As expected, the indoor levels of PAHs were larger than in the outdoor of the student residence and were of serious health concern. Overall, the concentrations of n-alkanes and PAHs were as high as those observed in the industrial zone and higher than the two suburban sites.  相似文献   

8.
The results from a year-long study of the organic composition of PM2.5 aerosol collected in a rural area influenced by a highway of Spain are reported. The lack of prior information related to the organic composition of PM2.5 aerosol in Spain, concretely in rural areas, led definition of the goals of this study. As a result, this work has been able to characterize the main organic components of atmospheric aerosols, including several compounds of SOA, and has conducted a multivariate analysis in order to assign sources of particulate matter. A total of 89 samples were taken between April 2004 and April 2005 using a high-volume sampler. Features and abundance of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), alcohols and acids were separately determined using gas chromatography/mass spectrometry and high performance liquid chromatography analysis. The Σn-alkane and ΣPAHs ranged from 3 to 81 ng m?3 and 0.1 to 6 ng m?3 respectively, with higher concentrations during colder months. Ambient concentrations of Σalcohols and Σacids ranged from 21 to 184 ng m?3 and 39 to 733 ng m?3, respectively. Also, several components of secondary organic aerosol have been quantified, confirming the biogenic contribution to ambient aerosol. In addition, factor analysis was used to reveal origin of organic compounds associated to particulate matter. Eight factors were extracted accounting more than 83% of the variability in the original data. These factors were assigned to a typical high pollution episode by anthropogenic particles, crustal material, plant waxes, fossil fuel combustion, temperature, microbiological emissions, SOA and dispersion of pollutants by wind action. Finally, a cluster analysis was used to compare the organic composition between the four seasons.  相似文献   

9.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

10.
Fifty-five seasonal PM2.5 samples were collected March 2003–January 2004 at Changdao, a resort island located at the demarcation line between Bohai Sea and Yellow Sea in Northern China. Changdao is in the transport path of the continental aerosols heading toward the Pacific Ocean in winter and spring due to the East Asia Monsoon. Solvent-extractable organic compounds (SEOC), organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) were analyzed for source identification based on molecular markers. This data set provides useful information for the downstream site researchers of the Asian continental outflow. Total carbon (TC, OC+EC) was ∼18 μg m−3 in winter, ∼9 μg m−3 in spring and autumn and a large part of the TC was WSOC (33% in winter, >45% in the other seasons). Winter and spring were the high SEOC seasons with n-fatty acids the highest at ∼290 and ∼170 ng m−3, respectively, followed by n-alkanes at ∼210 and ∼90 ng m−3, and polycyclic aromatic hydrocarbons (PAHs) were also at high at ∼120 and ∼30 ng m−3. High WSOC/TC, low C18:1/C18 of fatty acids, and low concentrations of labile PAHs such as benzo(a)pyrene, together with back trajectory analysis suggested that the aerosols were aged and transported. PAHs, triterpane and sterane distributions provided evidence that coal burning was the main source of the continental outflow. The detection of levoglucosan and β-sitosterol in nearly all the samples showed the impact of biomass burning.  相似文献   

11.
Atmospheric dry deposition is an important process for the introduction of aerosols and pollutants to aquatic environments. The objective of this paper is to assess, for the first time, the influence that the aquatic surface microlayer plays as a modifying factor of the magnitude of dry aerosol deposition fluxes. The occurrence of a low surface tension (ST) or a hydrophobic surface microlayer has been generated by spiking milli-Q water or pre-filtered seawater with a surfactant or octanol, respectively. The results show that fine mode (<2.7 μm) aerosol phase PAHs deposit with fluxes 2–3 fold higher when there is a low ST aquatic surface due to enhanced sequestration of colliding particles at the surface. Conversely, for PAHs bound to coarse mode aerosols (>2.7 μm), even though there is an enhanced deposition due to the surface microlayer for some sampling periods, the effect is not observed consistently. This is due to the importance of gravitational settling for large aerosols, rendering a lower influence of the aquatic surface on dry deposition fluxes. ST (mN m−1) is identified as one of the key factor driving the magnitude of PAH dry deposition fluxes (ng m−2 d−1) by its influence on PAH concentrations in deposited aerosols and deposition velocities (vd, cm s−1). Indeed, vd values are a function of ST as obtained by least square fitting and given by Ln(vd)=−1.77 Ln(ST)+5.74 (r2=0.95) under low wind speed (average 4 m s−1) conditions.  相似文献   

12.
In an effort to assess the occurrence and sources of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of Riyadh, Saudi Arabia, PM10 samples were collected during December 2010. Diagnostic PAH concentration ratios were used as a tool to identify and characterize the PAH sources. The results reflect high PM10 and PAH concentrations (particulate matter (PM)?=?270–1,270 μg/m3). The corresponding average PAH concentrations were in the range of 18?±?8 to 1,003?±?597 ng/m3 and the total concentrations (total PAHs (TPAHs) of 17 compounds) varied from 1,383 to 13,470 ng/m3 with an average of 5,871?±?2,830 ng/m3. The detection and quantification limits were 1–3 and 1–10 ng/ml, respectively, with a recovery range of 42–80 %. The ratio of the sum of the concentrations of the nine major non-alkylated compounds to the total (CPAHs/TPAHs) was 0.87?±?0.10, and other ratios were determined to apportion the PM sources. The PAHs found are characteristic for emissions from traffic with diesel being a predominant source.  相似文献   

13.
Concentrations of airborne polycyclic aromatic hydrocarbons (PAH), fluoride, suspended particles and particulate carbon were determined in four different residential areas near aluminum industries. Two of the areas were exposed to pollutants from primary aluminum production, the third area was close to a plant manufacturing electrodes for the aluminum industry while the fourth area received pollutants from the production of aluminum as well as electrodes. The sampling time was 24 h and the samples were collected every eighth day for about 16 months. The concentrations of PAH were high compared to levels in other polluted areas with industry and dense traffic. The average concentrations for benzo(a)pyrene (BaP) were above 10 ngm−3, which has been proposed as a guideline in some countries, at all sites. The highest air concentration of BaP measured in the present study was 160 ng m−3. At two of the stations the fluoride concentrations exceeded the 24-h national guideline of 25 μgm−3, which has been set to protect human health. In a few cases the concentrations of suspended particles were high while the levels of carbon agreed with concentrations reported in urban and residential areas in U.S.A. The concentrations varied with time and the variation was caused mainly by the changes of the meteorological conditions. The frequency distributions were skew for all components and close to logarithmic normal. PAH were well correlated with fluoride, which is an aluminum production tracer, indicating that they are of the same origin. The aluminum industry did not seem to be the main source of particulate matter and carbon in air. Apportionment studies of the organic pollutants were carried out by cluster analysis, and the results showed that the aluminum production is the main source to the PAH in ambient air in these areas.  相似文献   

14.
Higher plant waxes are the predominant natural components in the lipid fractions (> C15) of aerosols sampled over rural and oceanic regions. Hydrocarbon, fatty acid, ketone and fatty alcohol fractions of the lipids were characterized in terms of their contents of homologous compound series and specific biogenic molecular markers. Particulate samples from the rural western United States have been analyzed and compared with samples from urban Los Angeles and remote areas over the Atlantic Ocean. The samples from rural sites contained predominantly vascular plant wax and lesser amounts of higher plant sterols and resin residues. Urban samples and, to varying degrees, some rural samples contained primarily higher weight residues of petroleum products. The loadings of hydrocarbons derived from higher plant waxes ranged approximately from 10 to 160 ng m−3 of air (for fatty acids, 10–100 ng m−3 and for fatty alcohols, 10–200 ng m−3). Higher molecular weight lipids (i.e. plant epicuticular wax, terpenes, etc.) from flora comprise a significant component of the organic carbon in rural aerosols. Primary biogenic residues are major components of aerosols in all areas and they are important components in the global cycling of organic carbon.  相似文献   

15.
PM10 levels of the 16 US-EPA Priority Pollutant polycyclic aromatic hydrocarbons (PAHs) were measured from March 17 to 31, 2003, in 8-h time bins (morning, afternoon and nighttime) at Merced, a source site dominated by vehicular traffic emissions near the center of Mexico City, and at Pedregal, a receptor area located downwind in a residential area of low traffic. Along with PAH, elemental (EC) and organic carbon (OC), mass, and prevailing meteorological parameters were measured. At the source location, measured concentrations of benzo[a]pyrene (BAP), an agent suspected of being carcinogenic to humans and of causing oxidative DNA damage, reached concentrations as high as 2.04 and 2.11 ng m?3 during the morning of a weekday and the night period of a holiday. Compared with source dominated areas in Central Los Angeles, the BAP levels found in Central Mexico City are approximately 6 times higher. Benzo[ghi]perylene (BGP) levels were, in general, the highest among the target PAH, both at the source (7.2 ng m?3) and the receptor site (2.8 ng m?3), suggesting that, at both locations, exhaust emission by light-duty (LD) vehicles is an important contributor to the atmospheric PAH burden. Higher PAH concentrations were observed during the morning period (5:00–13:00 h) at the source and the receptor site. The concentrations of PAHs found predominantly in the particle-phase (MW > 202) correlated well (r = 0.57–0.71) with the occurrence of surface thermal inversions and with mixing heights (r = ?0.57 to ?0.72). Organic and elemental carbon ratios also indicated that Pedregal is impacted by secondary aerosols during the afternoon hours.  相似文献   

16.
Even though dry deposition and air–water exchange of semivolatile organic compounds (SOCs) are important for surfaces in and around the urban areas, there is still no generally accepted direct measurement technique for dry deposition. In this study, a modified water surface sampler (WSS) configuration, including a filter holder and an XAD-2 resin column, was employed to investigate the polycyclic aromatic hydrocarbon (PAH) dry deposition in an urban area. The measured total (particle+dissolved) PAH fluxes to the WSS averaged to be 34 960±16 540 ng m−2 d−1. Average particulate PAH flux, determined by analyzing the filter in the WSS, was about 8% of the total PAH flux. Temporal flux variations indicated that colder months (October–April) had the highest PAH fluxes. This increase could be attributed to the residential heating as well as meteorological effects including lower mixing height. A high volume air sampler was concurrently employed to collect ambient air concentrations. The average total (gas+particle) atmospheric PAH concentration (456±524 ng m−3) was within the range of previously measured values at different urban locations. PAH concentrations in urban areas are more than two orders of magnitude higher than those measured in pristine areas and this result may indicate that urban areas have major source sectors and greater deposition rates are expected near to these areas. The average contribution of particle phase was about 10% in total concentration. Simultaneous particulate phase dry deposition and ambient air samples were collected in this study. Then, particulate phase apparent dry deposition velocities were calculated using the fluxes and concentrations for each PAH compound and they ranged from 0.1 to 1.2 cm s−1. These values are in good agreement with previously reported values.  相似文献   

17.
PM2.5 aerosols were collected in Nanjing, a typical mega-city in China, during summer and winter 2004 and were characterized for aromatic and cyclic compounds using a GC/MS technique to understand the air pollution problem. They include polycyclic aromatic hydrocarbons (PAHs), hopanes, phthalates and hydroxy-PAHs (OH-PAHs). PAHs, hopanes and OH-PAHs presented higher concentrations in winter (26–178, 3.0–18, and 0.013–0.421 ng m−3, respectively) than in summer (12–96, 1.6–11, and 0.029–0.171 ng m−3, respectively) due to an enhanced coal burning for house heating and atmospheric inversion layers developed in the cold season. In contrast, phthalates are more abundant in summer (109–368 ng m−3, average 230 ng m−3) than in winter (33–390 ng m−3, average 170 ng m−3) due to an enhanced evaporation from plastics during the hot season and the subsequent deposition on the pre-existing particles. Generally, all the identified compounds showed higher concentrations in nighttime than in daytime due to inversion layers and increased emissions from heavy-duty trucks at night. PAHs, hopanes and phthalates in Nanjing aerosols are 5–100 times more abundant than those in Los Angeles, USA, indicating a serious air pollution problem in the city. Concentrations of OH-PAHs are 1–3 orders of magnitude less than their parent PAHs and comparable to those reported from other international cities. Source identification using diagnostic ratios of the organic tracers suggests that PAHs in Nanjing urban area are mainly derived from coal burning, whereas hopanes are more attributable to traffic emissions.  相似文献   

18.
Respirable suspended particles high-volume samples were collected from a coastal-rural site in the centre of Portugal in August 1997 and their solvent-extractable organic compounds were subjected to characterisation by gas chromatography-mass spectrometry. Particles were also analysed by a thermal/optical technique in order to determine their black and organic carbon content. The total lipid extract yields ranged from 20 to 63 μg m−3, containing mainly aliphatic hydrocarbons such as n-alkanes, acids, alcohols, aldehydes, ketones and polycyclic aromatic hydrocarbons. The higher input of vascular plant wax components was demonstrated by the distribution patterns of the n-alkanes, n-alkanoic acids and n-alkanols homologous series, with Cmax at C29, C22/C24 and C30, respectively. The CPI values for these series were in the range 1.8–9.7, being indicative of recent biogenic input from microbial lipid residues and flora epicuticular components. Specific natural constituents (e.g. phytosterols, terpenes, etc.) were identified as molecular markers. Some oxidation products from volatile organic precursors were also present in the aerosols. In addition, all samples had a component of petroleum hydrocarbons representing urban and vehicular emissions probably transported from the nearest cities and from the motorway in the vicinity. This data set could be used to make a mass balance with organic carbon, organic extracts and elutable matter, permitting also the comparison with lipid signatures observed for other regions.  相似文献   

19.
Fine particle (PM2.5) samples were collected, using a charcoal diffusion denuder, in two urban areas of Chile, Santiago and Temuco, during the winter and spring season of 1998. Molecular markers of the organic aerosol were determined using GC/MS. Diagnostic ratios and molecular tracers were used to investigate the origin of carbonaceous aerosols. As main sources, road and non-road engine emissions in Santiago, and wood burning in Temuco were identified. Cluster analysis was used to compare the chemical characteristics of carbonaceous aerosols between the two urban environments. Distinct differences between Santiago and Temuco samples were observed. High concentrations of isoprenoid (30–69 ng m−3) and unresolved complex mixture (UCM) of hydrocarbons (839–1369 ng m−3) were found in Santiago. High concentrations of polynuclear aromatic hydrocarbons (751±304 ng m−3) and their oxygenated derivatives (4±2 ng m−3), and of n-alk-1-enes (16±13 ng m−3) were observed in Temuco.  相似文献   

20.
An on-line supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry (SFE–LC–GC–MS) method was developed for the analysis of the particulate polycyclic aromatic hydrocarbons (PAHs). The limits of detection of the system for the quantification standards were in the range of 0.25–0.57 ng, while the limits of determinations for filter samples varied from 0.02 to 0.04 ng m−3 (24 h sampling). The linearity was excellent from 5 to 300 ng (R2>0.967). The analysis could be carried out in a closed system without tedious manual sample pretreatment and with no risk of errors by contamination or loss of the analytes. The results of the SFE–LC–GC–MS method were comparable with those for Soxhlet and shake-flask extractions with GC–MS. The new method was applied to the analysis of PAHs collected by high-volume filter in the Helsinki area to study the seasonal trend of the concentrations. The individual PAH concentrations varied from 0.015 to more than 1 ng m−3, while total PAH concentrations varied from 0.81 to 5.68 ng m−3. The concentrations were generally higher in winter than in summer. The mass percentage of the total PAHs in total suspended particulates ranged from 2.85×10−3% in July to 15.0×10−3% in December. Increased emissions in winter, meteorological conditions, and more serious artefacts during the sampling in summer season may explain the concentration profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号