首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The CALINE4 roadway dispersion model has been applied to concentrations of NOx and NO2 measured near Gandy Boulevard in Tampa, FL (USA) during May 2002. A NOx emission factor of 0.86 gr mi−1 was estimated by treating NO+NO2 (NOx) as a conserved species and minimizing the differences between measured and calculated NOx concentrations. This emission factor was then used to calculate NO2 concentrations using the NO/NO2 transformation reactions built into CALINE4. A comparison of measured and calculated NO2 concentrations indicates that for ambient O3 concentrations less than 40 ppb the model under-predicts the chemical transformation of NO. The enhanced transformation of NO may be due to reactions of NO with oxidants such as peroxy radicals that are present either in the atmosphere or in vehicle exhaust.  相似文献   

2.
Recent research has demonstrated that nitrogen oxides are transformed to nitrogen acids in indoor environments, and that significant concentrations of nitrous acid are present in indoor air. The purpose of the study reported in this paper has been to investigate the sources, chemical transformations and lifetimes of nitrogen oxides and nitrogen acids under the conditions existing in buildings. An unoccupied single family residence was instrumented for monitoring of NO, NO2, NOy, MONO, HNO3, CO, temperature, relative humidity, and air exchange rate. For some experiments, NO2 and HONO were injected into the house to determine their removal rates and lifetimes. Other experiments investigated the emissions and transformations of nitrogen species from unvented natural gas appliances. We determined that HONO is formed by both direct emissions from combustion processes and reaction of NO2 with surfaces present indoors. Equilibrium considerations influence the relative contributions of these two sources to the indoor burden of HONO. We determined that the lifetimes of trace nitrogen species varied in the order NO ~ HONO > NO2 >HNO3. The lifetimes with respect to reactive processes are on the order of hours for NO and HONO, about an hour for NO2, and 30 minutes or less for HNO3. The rapid removal of NO2 and long lifetime of HONO suggest that HONO may represent a significant fraction of the oxidized nitrogen burden in indoor air.  相似文献   

3.
ABSTRACT

To explore environmentally benign solvents for the absorption of NO and NO2, a series of caprolactam tetrabutyl ammonium halide ionic liquids were synthesized. The solubility of NO and NO2 was measured at temperatures ranging from 298.2 to 363.2 K and atmospheric pressure, and the following trend in the solubility of NO and NO2 in ionic liquids with various halide anions was observed, respectively: F > Br > Cl and Br > Cl > F. Moreover, as the temperature increased from 308.15 to 363.15 K and the mole ratio of caprolactam increased from 2:1 to 6:1, the solubility of NO increased. Alternatively, the solubility of NO2 decreased as the temperature increased from 298.15 to 363.15 K, and the mole ratio of caprolactam increased from 2:1 to 6:1. The absorption and desorption of NO and NO2 was practically reversible in the ionic liquids, which was characterized by nuclear magnetic resonance. The method, which is at least partially reversible, offers interesting possibilities for the removal of NO and NO2.

IMPLICATIONS Basic ionic liquids with amino groups were synthesized and used to capture CO2, SO2, and H2S, and to promote hydrogenation of CO2. In this paper, the authors used caprolactam tetrabutyl ammonium halide ionic liquid (IL) as absorbing medium in which NOx could be absorbed. NOx desorbed from the absorbent could be efficiently reduced by right catalysts at high temperature. The absorbed NO and NO2 gas could be desorbed at higher temperature, allowing the ionic liquids to be reused several times without loss of capability. It was believed that caprolactam tetrabutyl ammonium bromide (CPL-TBAB) ILs may be useful for NOx removal reagent for pollution control.  相似文献   

4.
Abstract

We evaluated day-of-week differences in mean concentrations of ozone (O3) precursors (nitric oxide [NO], nitrogen oxides [NOx], carbon moNOxide [CO], and volatile organic compounds [VOCs]) at monitoring sites in 23 states comprising seven geographic focus areas over the period 1998– 2003. Data for VOC measurements were available for six metropolitan areas in five regions. We used Wednesdays to represent weekdays and Sundays to represent weekends; we also analyzed Saturdays. At many sites, NO, NOx, and CO mean concentrations decreased at all individual hours from 6:00 a.m. to 3:00 p.m. on Sundays compared with corresponding Wednesday means. Statistically significant (p < 0.01) weekend decreases in ambient concentrations were observed for 92% of NOx sites, 89% of CO sites, and 23% of VOC sites. Nine-hour (6:00 a.m. to 3:00 p.m.) mean concentrations of NO, NOx, CO, and VOCs declined by 65, 49, 28, and 19%, respectively, from Wednesdays to Sundays (median site responses). Despite the large reductions in ambient NOx and moderate reductions in ambient CO and VOC concentrations on weekends, ozone and particulate matter (PM) nitrate did not exhibit large changes from week-days to weekends. The median differences between Wednesday and Sunday mean ozone concentrations at all monitoring sites ranged from 3% higher on Sundays for peak 8-hr concentrations determined from all monitoring days to 3.8% lower on Sundays for peak 1-hr concentrations on extreme-ozone days. Eighty-three percent of the sites did not show statistically significant differences between Wednesday and weekend mean concentrations of peak ozone. Statistically significant weekend ozone decreases occurred at 6% of the sites and significant increases occurred at 11% of the sites. Average PM nitrate concentrations were 2.6% lower on Sundays than on Wednesdays. Statistically significant Sunday PM nitrate decreases occurred at one site and significant increases occurred at seven sites.  相似文献   

5.
Dinitrogen pentoxide (N2O5), which is present in equilibrium with NO3 radicals and NO2, has been recognized for some time as an intermediate in the NOx chemistry of night-time atmospheres. However, until the advent of long pathlength spectroscopic techniques for the measurement of atmospheric NO3 radical concentrations, no reliable method for estimating N2O5 concentrations has been available. We have calculated maximum night-time N2O5 concentrations from the available experimentally determined concentrations of the NO3 radical and NO2 in the U.S. and Germany, and find that N2O5 concentrations as high as ~ 15 ppb can occur. We have also estimated removal rates for N2O5 and for NO3 radicals during these nights. From data obtained under conditions devoid of point sources of NOx, upper limit estimates of the homogeneous rate constant for the reaction of N2O5 with water vapor are obtained, leading to the conclusion that the homogeneous gas phase rate constant for this reaction is ⩽ 1 × 10−21 cm3 molecule−1 s−1 at 298 K, consistent with recent environmental chamber data.  相似文献   

6.
Simultaneous measurements were made of the concentrations of NO, NO2, and CO inside and outside of a building. The building is located in the Los Angeles area, which is heavily polluted by photochemical smog, and the experiments were conducted at a time of the year when the pollutants in question tend to be high. The results shows that there is a direct relationship between the inside and outside concentrations, and that the phase lag between the concentrations depends principally on the ratio of the building volume to the ventilation rate. Although the outside concentrations of the pollutants in question did not follow the same pattern every day, peak concentrations seemed to be related to “rush-hour” traffic. By reducing ventilation rates during these periods, it may be possible to reduce the concentration peaks inside of the building. The building involved in the current study was not located in the immediate vicinity of heavy traffic, and the indoor concentrations of NO, NO2, and CO did not appear to be very severe when compared to those defined by present air quality standards. Finally, the results support the belief that NO and O3 do not co-exist indoors except in very small quantities.  相似文献   

7.
ABSTRACT

As an odorless, nontoxic, and inert compound, sulfur hexafluoride (SF6) is one of the most widely used tracer gases in indoor air quality studies in both controlled and uncontrolled environments. This compound may be subject to reactions with water vapor under elevated temperature to form acidic inorganic compounds such as HF and H2SO4. Thus, in the presence of unvented combustion sources such as kerosene heaters, natural gas heaters, gas log fireplaces, candles, and lamps, the SF6 dissociation may interfere with measurements of the emissions from these sources. Tests were conducted in a research house with a vent-free natural gas heater to investigate these potential interferences. It was observed that the heater operation caused about a 5% reduction of SF6 concentration, which can be an error source for the ventilation rate measurement and consequently the estimated pollutant emission rates. Further analysis indicates that this error can be much greater than the observed 5% under certain test conditions because it is a function of the ventilation flow rate. Reducing the tracer gas concentration has no effect on this error. A simple theoretical model is proposed to estimate the magnitude of this error.

The second type of interference comes from the primary and secondary products of the SF6 dissociation, mainly H2SO4, SO2, HF, and fine particulate matter (PM). In the presence of ~5 ppm SF6, the total airborne concentrations of these species increased by a factor of 4-10. The tests were performed at relatively high SF6 concentrations, which is necessary to determine the interferences quantitatively. The second type of interference can be significantly reduced if the SF6 concentration is kept at a low ppb level.  相似文献   

8.
Unvented combustion sources in indoor environments generate emissions that contribute to indoor air pollution. Both the direct and mass-balance methods have been used to measure emission rates from these sources in field houses, test houses and chambers. In particular, emission rates have been obtained for pollutants from kerosene space heaters and from unvented gas appliances such as range-top burners, ovens, dryers and gas space heaters.Most studies have focused on the emission rates of the inorganic air constituents (NO, NO2, CO and a few others). This paper compares the two methods of emission rate measurement, and summarizes the emission rates of NO, NO2 and CO from range-top burners.The emission rates of NO, NO2 and CO from range-top burners are well quantified, but vary widely as a function of the source condition. The experiments described herein found that the two methods provide comparable emission rates. Consequently, in support of the research needed to establish the distribution of emission rates from range-top burners in the U.S. housing stock, the method to be employed should be the one that provides the required information cost effectively.  相似文献   

9.
In the United States, fertilized corn fields, which make up approximately 5% of the total land area, account for approximately 45% of total soil NOx emissions. Leaf chamber measurements were conducted of NO and NO2 fluxes between individual corn leaves and the atmosphere in (1) field-grown plants near Champaign, IL (USA) in order to assess the potential role of corn canopies in mitigating soil–NOx emissions to the atmosphere, and (2) greenhouse-grown plants in order to study the influence of various environmental variables and physiological factors on the dynamics of NO2 flux. In field-grown plants, fluxes of NO were small and inconsistent from plant to plant. At ambient NO concentrations between 0.1 and 0.3 ppbv, average fluxes were zero. At ambient NO concentrations above 1 ppbv, NO uptake occurred, but fluxes were so small (14.3±0.0 pmol m−2 s−1) as to be insignificant in the NOx inventory for this site. In field-grown plants, NO2 was emitted to the atmosphere at ambient NO2 concentrations below 0.9 ppbv (the NO2 compensation point), with the highest rate of emission being 50 pmol m−2 s−1 at 0.2 ppbv. NO2 was assimilated by corn leaves at ambient NO2 concentrations above 0.9 ppbv, with the maximum observed uptake rate being 643 pmol m−2 s−1 at 6 ppbv. When fluxes above 0.9 ppbv are standardized for ambient NO2 concentration, the resultant deposition velocity was 1.2±0.1 mm s−1. When scaled to the entire corn canopy, NO2 uptake rates can be estimated to be as much as 27% of the soil-emitted NOx. In greenhouse-grown and field-grown leaves, NO2 deposition velocity was dependent on incident photosynthetic photon flux density (PPFD; 400–700 nm), whether measured above or below the NO2 compensation point. The shape of the PPFD dependence, and its response to ambient humidity in an experiment with greenhouse-grown plants, led to the conclusion that stomatal conductance is a primary determinant of the PPFD response. However, in field-grown leaves, measured NO2 deposition velocities were always lower than those predicted by a model solely dependent on stomatal conductance. It is concluded that NO2 uptake rate is highest when N availability is highest, not when the leaf deficit for N is highest. It is also concluded that the primary limitations to leaf-level NO2 uptake concern both stomatal and mesophyll components.  相似文献   

10.
We analyse the air quality data measured at a green area of Buenos Aires City (Argentina) during 38 days in winter. We study the relationships between ambient concentrations of nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3) and nitrogen oxides (NOx=NO+NO2). The variation of the level of oxidant (OX=O3+NO2) with the NOx is obtained. It can be seen that the level of OX at a given location is made up of two contributions: one independent and another dependent on the NOx concentration. The first one can be considered as a regional contribution, equivalent to the background O3 concentration and the second one as a local contribution that depends on the level of primary pollution. Local oxidant sources may include direct NO2 emissions, the reaction of NO with O2 at high-NOx levels, and the emission of species that promote the conversion of NO to NO2. The final category of emissions may include the nitrous acid (HONO) that is emitted directly in vehicle exhaust. Finally, we present a diurnal variation of the local as well as regional contributions and the dependence of the last one on wind direction.  相似文献   

11.
As part of a larger program to investigate indoor sources of air pollution, an indoor/outdoor sampling program was carried out for NO, NO2, and CO In four private houses which had gas stoves. The four houses chosen for study represented different surrounding land use, life styles, and house age and layout. The pollutant gases were measured essentially simultaneously at three indoor locations and one outdoor location. The results of the program showed that indoor levels of NO and NO2 are directly related to stove use in the homes tested. Furthermore, these stoves often produced more NO2 than NO. In some instances, the levels of NO2 and CO in the kitchen exceeded the air quality standards for these pollutants if such outdoor standards were to be applied to indoors and the data for the sampling periods were typical of an entire year. A diffusion experiment conducted in one of the houses showed that the half-life for NO2 was less than one-third that for either NO or CO. Oxidation of NO to NO2 (based upon comparing the half-life of NO to CO) does not appear to occur to a significant degree indoors.  相似文献   

12.
The Environmental Protection Agency is reviewing the need for a short-term NO2 standard based on an averaging time of three hours or less. State Implementation plans and New Source Reviews will require air quality simulation techniques capable of estimating ambient NO2 concentrations. There is a need for multi-source (urban) models and for point source models.

A review of currently available techniques for the estimation of NO2 concentrations resulting from NOx point sources is presented. The available methods include simple screening techniques and refined reactive plume models. The screening techniques first use a standard gaussian dispersion model to estimate the maximum 1 hr NOx concentration caused by the source. The second step involves estimating the fraction of this NO* concentration occurring as NO2.

Reactive plume models numerically simulate the simultaneous effects of dispersion and chemistry on NO2 concentrations. Organic as well as inorganic reactions are incorporated. Reactive plume models should be used, where screening techniques indicate the potential for violation of the NO2 standard.

Current generation reactive plume models neglect the effect of turbulent concentration fluctuation on NO2 formation and use inappropriately large dispersion coefficients to estimate plume concentrations. Approaches being developed to resolve these problems are discussed.  相似文献   

13.
Based on NO concentrations and meteorological variables recorded hourly at a point close to an avenue with heavy traffic in the city of Santiago, we are able to build a simple model that allows prediction of NO concentrations several hours in advance. Predicted NO concentrations in conjunction with forecasted meteorological data may be used to predict NO2 concentrations with reasonable accuracy. We compare predictions generated using persistence, linear regressions and multi layer neural networks.  相似文献   

14.
Two indicator pollutants, carbon monoxide (CO) for mobile source influence and sulfur dioxide (SO2) for stationary source influence, were used to estimate source-type contributions to ambient NO2 levels in a base year and to predict NO2 concentrations in a future year. For a specific source-receptor pair, the so-called influence coefficient of each of three source categories (mobile sources, power plants, and other stationary sources) was determined empirically from concurrent measurements of CO and SO2 concentrations at the receptor site and CO and SO2 emissions from each source category in the source area. Those coefficients, which are considered time invariant, were used in conjunction with the base year and future year NO x emission values to estimate source-type contribution to ambient NO2 levels at seven study sites selected from the Greater Los Angeles area for both the base year period, 1974 through 1976, and the future goal year of 1987 in which the air quality standards for NO2 are to be attained. The estimated NO2 air quality at the seven sites is found to meet the national annual standard of 5 pphm and over 99.9% of total hours, the California 1-hr NO2 standard of 25 pphm in 1987. The estimated power plant contributions to ambient NO2 levels are found to be considerably smaller than those to total NO x emissions in the area. Providing that reasonably complete air quality and emissions data are available, the present analysis method may prove to be a useful tool in evaluating source contributions to both short-term peak and long-term average NO2 concentrations for use in control strategy development.  相似文献   

15.
ABSTRACT

Mixing ratios of the criteria air contaminant nitrogen dioxide (NO2) are commonly quantified by reduction to nitric oxide (NO) using a photolytic converter followed by NO-O3 chemiluminescence (CL). In this work, the performance of a photolytic NO2 converter prototype originally designed for continuous emission monitoring and emitting light at 395 nm was evaluated. Mixing ratios of NO2 and NOx (= NO + NO2) entering and exiting the converter were monitored by blue diode laser cavity ring-down spectroscopy (CRDS). The NO2 photolysis frequency was determined by measuring the rate of conversion to NO as a function of converter residence time and found to be 4.2 s?1. A maximum 96% conversion of NO2 to NO over a large dynamic range was achieved at a residence time of (1.5 ± 0.3) s, independent of relative humidity. Interferences from odd nitrogen (NOy) species such as peroxyacyl nitrates (PAN; RC(O)O2NO2), alkyl nitrates (AN; RONO2), nitrous acid (HONO), and nitric acid (HNO3) were evaluated by operating the prototype converter outside its optimum operating range (i.e., at higher pressure and longer residence time) for easier quantification of interferences. Four mechanisms that generate artifacts and interferences were identified as follows: direct photolysis, foremost of HONO at a rate constant of 6% that of NO2; thermal decomposition, primarily of PAN; surface promoted photochemistry; and secondary chemistry in the connecting tubing. These interferences are likely present to a certain degree in all photolytic converters currently in use but are rarely evaluated or reported. Recommendations for improved performance of photolytic converters include operating at lower cell pressure and higher flow rates, thermal management that ideally results in a match of photolysis cell temperature with ambient conditions, and minimization of connecting tubing length. When properly implemented, these interferences can be made negligibly small when measuring NO2 in ambient air.

Implications: A new near-UV photolytic converter for measurement of the criteria pollutant nitrogen dioxide (NO2) in ambient air by CL was characterized. Four mechanisms that generate interferences were identified and investigated experimentally: direct photolysis of HONO which occurred at a rate constant 6% that of NO2, thermal decomposition of PAN and N2O5, surface promoted chemistry involving HNO3, and secondary chemistry involving NO in the tubing connecting the converter and CL analyzer. These interferences are predicted to occur in all NO2 P-CL systems but can be avoided by appropriate thermal management and operating at high flow rates.  相似文献   

16.
Abstract

The objective of this project is to demonstrate how the ambient air measurement record can be used to define the relationship between O3 (as a surrogate for photochemistry) and secondary particulate matter (PM) in urban air. The approach used is to develop a time-series transfer-function model describing the daily PM10 (PM with less than 10 μm aerodynamic diameter) concentration as a function of lagged PM and current and lagged O3, NO or NO2, CO, and SO2. Approximately 3 years of daily average PM10, daily maximum 8-hr average O3 and CO, daily 24-hr average SO2 and NO2, and daily 6:00 a.m.-9:00 a.m. average NO from the Aerometric Information Retrieval System (AIRS) air quality subsystem are used for this analysis. Urban areas modeled are Chicago, IL; Los Angeles, CA; Phoenix, AZ; Philadelphia, PA; Sacramento, CA; and Detroit, MI. Time-series analysis identified significant autocorrelation in the O3, PM10, NO, NO2,CO, and SO2 series. Cross correlations between PM10 (dependent variable) and gaseous pollutants (independent variables) show that all of the gases are significantly correlated with PM10 and that O3 is also significantly correlated lagged up to two previous days. Once a transfer-function model of current PM10 is defined for an urban location, the effect of an O3-control strategy on PM concentrations is estimated by calculating daily PM10 concentrations with reduced O3 concentrations. Forecasted summertime PM10 reductions resulting from a 5 percent decrease in ambient O3 range from 1.2 μg/m3 (3.03%) in Chicago to 3.9 μg/m3 (7.65%) in Phoenix.  相似文献   

17.
This study investigates several factors that could influence ozone chemistry occurring in subsonic aircraft plumes in the upper troposphere. The study focuses on uncertainties in gas-phase rate parameters, but also examines the influence of selected heterogeneous reactions, the rate of expansion of the plume, ambient and initial plume concentrations, and the time of emissions. Monte Carlo analysis with Latin hypercube sampling was applied to an expanding box model of an aircraft plume, in order to estimate the sensitivities of O3 perturbations (ΔO3) to uncertainties in rate constants in the RADM2 chemical mechanism. The resulting coefficient of variation in ΔO3 at the end of a 36 h simulation was about 50%. Influential uncertainties in gas-phase rate parameters include those for photolysis of NO2 and HCHO, O3+NO, HO2+NO, and formation of PAN and HNO3. With high background concentrations of non-methane hydrocarbons, uncertainties in rate parameters of reactions involving peroxy radicals from ethene and propene oxidation were also influential. The coefficient of variation for ΔO3 due to uncertainties in emission indices of NOx, CO, and organic compounds was less than 15%. The effects of the heterogeneous reaction of N2O5 leading to HNO3 formation, and hypothesized reactions of HNO3 and NO2 on soot, were also investigated. The results suggest that the latter two reactions could be influential for ΔO3 if published estimates of reaction probabilities and high estimates of soot concentrations in plumes are realistic.  相似文献   

18.
In the May and June of 1998, field measurements were taken at a site near the Usery Pass Recreation Area, ∼27 miles from the downtown Phoenix area, overlooking Phoenix and Mesa, Arizona. This site was selected to examine the impacts of the Phoenix urban plume on the Usery Pass Recreation Area and surrounding regions. Data were obtained for ultraviolet-B (UVB) radiation, nitrogen dioxide (NO2), peroxyacetyl nitrate (PAN), ozone (O3), and carbon monoxide (CO). Nocturnal plumes of NO2 (in tens of ppb), observed near midnight, were correlated with CO and anti-correlated with O3. This behavior was consistent with the titration of locally generated NO by boundary layer O3 to form the nighttime NO2 plumes that were subsequently transported into the Usery Pass Recreation area. Nitrate radical (NO3) production rates were calculated to be very high on the edges of these nocturnal plumes. Examination of O3 and PAN data also indicates that Phoenix is being affected by long-range transport of pollutants from the Los Angeles to San Diego areas. A regional smoke episode was observed in May, accompanied by a decrease in UVB of factor of two and a decrease in O3 and an increase in methyl chloride. Low level back trajectories and chemical evidence confirm that the smoke event originated in northern Mexico and that the reduced O3 levels observed at Usery Pass could be partially due to reduced photolysis rates caused by carbonaceous soot aerosols transported in the smoke plume. The results are discussed with regard to potential effects of local pollution transport from the Phoenix air basin as well as an assessment of the contributions from long-range transport of pollutants to the background levels in the Phoenix-Usery Pass area.  相似文献   

19.
A detailed comparative trial of passive diffusion tubes (PDT) for measurement of NO2 in urban air has been undertaken in Edinburgh, UK. Acrylic, foil-wrapped and quartz tubes were exposed in parallel for 1-week and 4-week periods at three urban sites equipped with continuous analysers for NO, NOx and O3. Standard acrylic PDTs significantly overestimated NO2 concentrations relative to chemiluminescence analysers, by an average of 27% over all sites for 1-week exposures. No significant difference was observed between standard and foil-wrapped acrylic tubes (both UV blocking). The mean ratio between quartz (UV transmitting) tubes and chemiluminescence analysers was 1.06. Quartz PDT data suggest a tendency for in situ photolysis to offset (but in a non-quantifiable way) the effect of chemical overestimation. The 4-week exposures yielded systematically lower NO2 concentration than average NO2 from four sequential 1-week exposures over the same period. The reduction in the apparent NO2 sampling rate with time mostlikely arises from in situ photolysis of trapped NO2. Hourly NO2, NO and O3 data for 20 1-week exposures were used as input to a numerical model of diffusion tube operation incorporating chemical reaction between co-diffusing NO and O3 within the tube. The mean calculated overestimation of 22% for NO2 from the PDT model simulations is close to the average difference between acrylic PDT and analyser NO2 concentrations (24% for the same exposure periods), showing that within-tube chemistry can account for observed discrepancies in NO2 measurement between the two techniques. Overestimation by PDT generally increased as average NO2/NOx ratios decreased. Accurate quantitative correction of PDT measurements is not possible. Nevertheless, PDT NO2 concentrations were correlated with both analyser NO2 and NOx suggesting that acrylic PDTs retain a qualitative measure of NO2 and NOx variation at a particular urban location.  相似文献   

20.
2012年6—10月,在我国北方某焦化厂厂界附近开展了O3、NO x、CO体积分数在线监测及VOCs样品采集分析工作,获得了夏、秋两季焦化厂厂界O3及其前体物的体积分数及其日变化趋势。焦化厂厂界附近O3、NO、CO体积分数均呈单峰型日变化,O3体积分数的季节差异不明显,夏季仅略高于秋季,而NO、CO体积分数秋季高于夏季,作为二次反应产物的NO2,其变化幅度秋季比夏季强烈。夏季TVOCs在各监测时段的小时体积分数呈现先上升后下降的日变化趋势,而秋季则呈现逐渐下降的日变化趋势。由较小VOCs/NO x的比值可初步判断,该焦化厂所在区域的大气光化学臭氧生成潜势处于VOCs控制区。在焦化厂下风向厂界附近,夏、秋两季TVOCs平均体积分数分别为(43.8±45.0)×10-9和(26.7±29.6)×10-9,苯系物、烷烃、烯烃的平均体积分数分别为(34.3±28.1)×10-9和(14.4±14.8)×10-9、(5.3±11.8)×10-9和(7.0±7.7)×10-9、(4.3±5.0)×10-9和(5.3±7.1)×10-9。夏、秋两季焦化厂附近臭氧生成潜势贡献最大的是苯系物(47.6%~65.8%),其次是烯烃(28.0%~41.9%),再次是烷烃(6.3%~10.5%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号