首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Concentrations of alkyllead in ambient air were measured, as well as in car exhaust and in gasoline vapours. In Oslo the concentration in air ranged from 0.010 to 0.100 μg Pb m−3, and these values were compared to the concentrations (< 0.001 μg Pb m−3) measured in a low traffic rural area of Norway. The amount of alkyllead in car exhaust varied between 0.1 and 15 μg Pb m−3, which was between 0.01 and 0.5% of the amount of inorganic lead in exhaust. Evaporation of alkyllead from parked cars was estimated at 0.5 mg Pb per day per car. The concentrations of alkyllead in saturated gasoline vapour were found to be 10–20 mg Pb m−3 at ambient air temperatures.  相似文献   

2.
The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas–aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl, NO2, NO3, SO42−, Na+, NH4+, K+, Mg2+ and Ca2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m−3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.  相似文献   

3.
To investigate the characteristics of mercury exchange between soil and air in the heavily air-polluted area, total gaseous mercury (TGM) concentration in air and Hg exchange flux were measured in Wanshan Hg mining area (WMMA) in November, 2002 and July–August, 2004. The results showed that the average TGM concentrations in the ambient air (17.8–1101.8 ng m−3), average Hg emission flux (162–27827 ng m−2 h−1) and average Hg dry deposition flux (0–9434 ng m−2 h−1) in WMMA were 1–4 orders of magnitude higher than those in the background area. It is said that mercury-enriched soil is a significant Hg source of the atmosphere in WMMA. It was also found that widely distributed roasted cinnabar banks are net Hg sources of the atmosphere in WMMA. Relationships between mercury exchange flux and environmental parameters were investigated. The results indicated that the rate of mercury emission from soil could be accelerated by high total soil mercury concentration and solar irradiation. Whereas, highly elevated TGM concentrations in the ambient air can restrain Hg emission from soil and even lead to strongly atmospheric Hg deposition to soil surface. A great amount of gaseous mercury in the heavily polluted atmosphere may cycle between soil and air quickly and locally. Vegetation can inhibit mercury emission from soil and are important sinks of atmospheric mercury in heavily air-polluted area.  相似文献   

4.
The distribution of mutagenic activity and nitroaromatic components of polycyclic organic matter (POM) in ambient air at industrial, urban, suburban, rural, and remote sites was studied using organic extracts from high volume aerosol samples. Direct-acting mutagens including 1-nitropyrene (1-NP), dinitropyrenes (DNP), and hydroxynitropyrenes (HNP) were measured by high performance liquid chromatography while the mutagenicity was determined in the Salmonella bioassay with strain TA-98. Benzo(a)pyrene (BaP), one of the possible precursors of nitroaromatic compounds in POM, was also measured. In comparing samples from a range of sites, TSP and the concentration of BaP per mass of particulate matter decreased, as expected, at greater distances from urban and industrial combustion sources. However, the concentrations of polar nitroaromatic POM compounds per mass of particles were higher at a remote site than in nonindustrial urban and suburban areas. The mutagenicity in particulate matter extracts from the remote area was predominantly (>90 percent) in the very polar fractions. There were also high atmospheric levels of nitroaromatic compounds and mutagenicity in heavily industrialized areas. These observations may reflect the influences of source emissions, atmospheric transformations of POM compounds, and ther atmospheric processes on the composition of ambient suspended particulate matter.  相似文献   

5.
Weather and topographical situations where different types of emission sources give their highest ground level concentrations have been tabulated during a CORECH study. To see what daily average concentrations actually occur in an area where there are a large number of power stations, low level and other industrial sources but no topographical complications, occasions when one or more of the 10 SO2 recorders in the Drax monitoring network exceeded 200 μm−3 during the 10-year period preceding the termination of sampling were noted. There were 44 such occasions. On 17 of them, the principal contribution to the peak value appeared to come from low level sources associated with smoke emissions and on nine it appeared to come from industrial sources in the Doncaster (including Doncaster and Thorpe Marsh power stations), Scunthorpe (including Keadby power station) or Humberside (no power station) areas. The source areas containing the most modern 2000 MW power stations. South Yorkshire (13 times) and Trent Valley (five times), appeared to pre-dominale on other occasions. In these latter cases, with only one exception, the weather situation was either a persistent slow moving anti-cyclone with the free stream wind speed falling to 2.5 ms−1 or less or a day with a very steady free stream wind direction, associated with a col in the surface pressure distribution. In both of these situations, upward vertical mixing was limited by a subsidence and/or advection temperature inversion aloft.  相似文献   

6.
A modified factor analysis/multiple regression (FA/MR) receptor-oriented source apportionment model has been developed which permits application of FA/MR statistical methods when some of the tracers are not unique to an individual source type. The new method uses factor and regression analyses to apportion non-unique tracer ambient concentrations in situations where there are unique tracers for all sources contributing to the non-unique tracer except one, and ascribes the residual concentration to that source. This value is then used as the source tracer in the final FA/MR apportionment model for ambient paniculate matter. In addition, factor analyses results are complemented with examination of regression residuals in order to optimize the number of identifiable sources.The new method has been applied to identify and apportion the sources of inhalable particulate matter (IPM; D5015 μm), Pb and Fe at a site in Newark, NJ. The model indicated that sulfate/secondary aerosol contributed an average of 25.8 μ−3 (48%) to IPM concentrations, followed by soil resuspension (8.2 μ−3 or 15%), paint spraying/paint pigment (6.7/gmm−3or 13%), fuel oil burning/space heating (4.3 μ−3 or 8 %), industrial emissions (3.6 μm−3 or 7 %) and motor vehicle exhaust (2.7 μ−3 or 15 %). Contributions to ambient Pb concentrations were: motor vehicle exhaust (0.16μm−3or 36%), soil resuspension (0.10μm−3 or 24%), fuel oil burning/space heating (0.08μm−3or 18%), industrial emissions (0.07 μ−3 or 17 %), paint spraying/paint pigment (0.036 μm−3or 9 %) and zinc related sources (0.022 μ−3 or 5 %). Contributions to ambient Fe concentrations were: soil resuspension (0.43μ−3or 51%), paint spraying/paint pigment (0.28 μm−3or 33 %) and industrial emissions (0.15 μ−3or 18 %). The models were validated by comparing partial source profiles calculated from modeling results with the corresponding published source emissions composition.  相似文献   

7.
An air asbestos survey was conducted between late 1974 and early 1977 to define the magnitude of the health hazard posed by airborne asbestos fibers in Connecticut prior to the promulgation of the State's proposed asbestos air quality standard (i.e., 30 ?g/m3 or 30,000 total asbestos fibers/m3, 30-day average). A newly developed low volume particulate sampler, which operates continuously for 30 days at an air sampling flow rate of 4 cfm, equipped with special membrane filters was used to collect ambient TSP samples for subsequent chrysotile asbestos electron microscopic determination by the Bat-telle-Columbus Laboratories and Walter C. McCrone Associates.

Approximately 40 monitoring sites were selected; ambient locations included "typical" urban sites removed from known stationary sources of asbestos emissions, rural-background sites, stations contiguous to 4 industrial users of asbestos (i.e., manufacturers of friction products, insulated wire and cable, ammunition and molding compounds), 3 toll plazas situated at various points along Interstate 95 and indoors at a swimming pool at the University of Connecticut (the ceiling over the pool was sprayed with an asbestos-containing insulating material). Ambient chrysotile asbestos levels removed from asbestos emission sources in both urban and rural locations were below 10 ?g/m3. However, asbestos concentrations above 30 ?g/m3 were measured near each of the industrial users of asbestos. Furthermore, asbestos levels adjacent to the toll plazas were also elevated (in the 10 ?g/m3 to 25 ?g/m3 range), implicating asbestos emissions from vehicle braking lining decomposition as a significant source of airborne asbestos fibers. Indoor air asbestos levels were below 1 ?g/m3 suggesting that the risk to public health associated with the deterioration of asbestos surface coatings applied indoors may not be as severe as previously thought.  相似文献   

8.
Annual study on the benzo(a)pyrene (BaP) concentration in aerosols in the coastal zone of the Gulf of Gdansk (southern Baltic) has been performed at Gdynia station. Combustion processes, especially domestic heating of both local and regional origin, were identified as the main sources of benzo(a)pyrene in this area. Concentrations observed during the heating season (mean 2.18 ng?m?3) were significantly higher than these recorded in the non-heating season (mean 0.05 ng?m?3). High benzo(a)pyrene concentrations were associated with low temperature and high humidity. Whereas high levels of precipitation usually decreased the BaP concentration in aerosols. The concentration of this factor in the studied area depended also on the wind direction and air masses trajectories. During heating season, continental air masses (coming from S, SE, SW) seemed to increase benzo(a)pyrene concentration, while maritime air masses (from N, NE, NW) caused its decrease. The differences in the BaP concentration resulting from potentially different emission levels of this compound during working and non-working days were not clearly pronounced.  相似文献   

9.
Municipal solid waste incinerators (MSWIs) have long been the major contributors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to ambient air in Taiwan. After stringent MSWI emission standards were introduced in 2001, the long-term continuous monitoring of flue gas and ambient air quality became necessary to ensure the effectiveness of the related control strategies. Three MSWIs and the surrounding ambient air were investigated in the current study for PCDD/F characteristics during 2006 to 2011. The average concentrations in the flue gas ranged from 0.008?~?0.0488 ng I-TEQ/Nm3, which is much less than the emission standard in Taiwan (0.1 ng I-TEQ/Nm3) (I-TEQ is the abbreviation of International Toxic Equivalent). This led to extremely low levels in the ambient air, 0.0255 pg I-TEQ/Nm3, much less than the levels seen in most urban areas around the world. Additionally, the results obtained using the Industrial Source Complex Short-Term Dispersion Model (ISCST3) indicate that the PCDD/F contributions from the three MSWIs to the ambient air were only in the range from 0.164?~?0.723 %. Principal component analysis (PCA) showed that the PCDD/Fs in the air samples had very similar characteristics to those from mobile sources. The results thus show that stringent regulations have been an effective control strategy, especially for urban areas, such as Taipei City.  相似文献   

10.
Marine aerosols were collected using a five-stage cascade impactor during the PHYCEMED II cruise in the Western Mediterranean Sea (October 1983). Their composition in aliphatic and aromatic hydrocarbons (HCs) was analyzed, representing the first time that concentrations of polynuclear aromatic HCs (PAH) are reported in relation to particle size for aerosols of remote marine areas. The HC concentrations were found to be dependent on the origin of the air masses. They were higher for air coming from North European countries than for air originating in the Atlantic and the South of Spain. The concentrations range between 7 and 14 ng m−3for n-alkanes and between 0.2 and 0.4 ng m−3for total PAH. Based on molecular criteria, several sources for these HCs have been identified: continental higher plant waxes, petroleum and pyrolysis (namely coal combustion and vehicular exhausts). Mass medium equivalent diameters (MMED) for the naturally derived n-alkanes are in the 1.79-2.53 μm range, indicating an origin related with the emission of large particles from higher plant waxes or from soil dusts. In contrast, MMED for the anthropogenic HCs, both aliphatic and aromatic, are smaller than the micron, suggesting initial emission of PAH through pyrolytic processes in the vapor phase followed by condensation onto larger sub-μm particles.  相似文献   

11.
Fluoride concentrations were determined in PM10 samples collected in the urbanized coastal area of the Baltic Sea (Gdynia) in the period between 1 August 2008 and 8 January 2010. F? concentrations remained within the range of 0.4–36.6 ng?·?m?3. The economic transformations which have taken place in Poland increasing ecological awareness have had an excellent effect on the levels of fluoride pollution in the air of the studied region. In our measurements, fluoride concentrations increased in wintertime, when air temperature dropped, at low wind speeds (<1 m?·?s?1) and with low dispersion of pollutants originating from local sources (traffic, industry, domestic heating). At times when wind speed grew to >10 m?·?s?1, fluorides were related to marine aerosols or else brought from distant sources. Apart from wind speed and air temperature, other significant meteorological parameters which determined the variability of F? turned out to be air humidity and precipitation volume. Aerosols were washed out effectively, even with small precipitation (h?=?4 mm), and if a dry period lasted for several days, their concentrations grew rapidly to over 30.0 ng?·?m?3.  相似文献   

12.
Isocyanatocyclohexane and isothiocyanatocyclohexane are becoming relevant compounds in urban and industrial air, as they are used in important amounts in automobile industry and building insulation, as well as in the manufacture of foams, rubber, paints and varnishes. Glass multi-sorbent tubes (Carbotrap, Carbopack, Carboxen) were connected to LCMA-UPC pump samplers for the retention of iso- and isothiocyanatocyclohexanes. The analysis was performed by automatic thermal desorption (ATD) coupled with capillary gas chromatography (GC)/mass spectrometry detector (MSD). TD-GC/MS was chosen as analytical method due to its versatility and the possibility of analysis of a wide range of volatility and polarity VOC in air samples. The method was satisfactory sensitive, selective and reproducible for the studied compounds. The concentrations of iso- and isothioisocyanatocyclohexanes were evaluated in different urban, residential and industrial locations from extensive VOC air quality and odour episode studies in several cities in the Northeastern edge of Spain. Around 200–300 VOC were determined qualitatively in each sample. Higher values of iso- and isothiocyanatocyclohexane were found in industrial areas than in urban or residential locations. The concentrations ranged between n.d.−246 and n.d.−29 μg m−3 for isocyanatocyclohexane and isothiocyanatocyclohexane, respectively, for industrial areas. On the other hand, urban and residential locations showed concentrations ranging between n.d.−164 and n.d.−29 μg m−3 for isocyanatocyclohexane and isothiocyanatocyclohexane, respectively. The site location (urban or industrial), the kind and nearness of possible iso- and isothiocyanatocyclohexane emission activities (industrial or building construction) and the changes of wind regimes throughout the year have been found the most important factors influencing the concentrations of these compounds in the different places.  相似文献   

13.
The bacterial mutagenicity of ambient particulate organic matter (POM) was measured for consecutive 3-hour time intervals over a 27-hour period in March 1983 at two sites on opposite sides of the heavily traveled San Diego Freeway (I-405) in West Los Angeles (WLA), California, the diurnal variations in the direct (not requiring S9 metabolic activation) mutagenic burden of airborne particulates and the magnitude of the mutagen doses observed at these sites were similar to those previously observed at a site just east of downtown Los Angeles (ELA). Highs (~150 rev m?3) and lows (~35 rev m?3) in mutagen densities occurred over short time intervals (a few hours) probably due to changes in emissions, mixing heights and wind speeds. Offshore air flows which drained the air basin between midnight and 0600 PST resulted in elevated mutagen density levels at the western edge of the Los Angeles Basjn. The incremental burden of direct mutagens in respirable POM attributable to freeway traffic reached 50 rev m?3 during this study. Consistent with our results for ELA there was diminished response on the Salmonella typhimurium nitroreductase-deficient strain TA98NR vs. TA98 suggesting that nitroarenes contribute significantly to the direct mutagenicity of POM collected at the WLA sites.  相似文献   

14.

Introduction

This study collected long-term airborne lead concentrations in the Korean peninsula and analyzed their temporal, spatial, and cancer risk characterization.

Methods

Approximately, 12,000 airborne samples of total suspended particulate (TSP) were collected from 30 ambient air monitoring stations in inland (Daegu, Daejeon, Gwangju, and Seoul) cities and portal cities (Incheon, Busan, and Ulsan) over a period of 7?years (2004?C2010). High volume air samplers were employed to collect daily TSP samples during the second week of the consecutive months throughout the entire study period. The concentrations of Pb extracted from the TSP samples were analyzed using either inductively coupled plasma-atomic emission or flame atomic absorption spectrometry.

Results

The long-term high mean Pb concentrations were observed in the port cities including Incheon (88?±?18?ng/m3), Ulsan (61?±?7?ng/m3), and Busan (58?±?6?ng/m3). In the temporal analysis, seasonal mean Pb levels were relatively higher in winter and spring than those in summer and fall. In the spatial analysis, the mean Pb levels in spring, winter, and fall from Incheon, which showed the highest seasonal concentrations except summer, were 110?±?19, 101?±?18, and 76?±?23?ng/m3, respectively. In summer, the highest seasonal mean Pb level was observed in the largest industrial city and the second port city, Ulsan (78?±?15?ng/m3), followed by Incheon (65?±?13?ng/m3).

Conclusion

The estimated excess cancer risk analysis showed that inhalation of Pb could result in cancer for one or two persons per million of population in the Korean peninsula.  相似文献   

15.
Shin SK  Jin GZ  Kim WI  Kim BH  Hwang SM  Hong JP  Park JS 《Chemosphere》2011,83(10):1339-1344
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) were measured in ambient air samples collected from different parts of South Korea in 2008, and the measured levels were used for assessing the spatial and temporal distribution of atmospheric PCDDFs and DL-PCBs in South Korea. The average concentrations of atmospheric PCDD/Fs and DL-PCBs among the 37 sites were 28 fg I-TEQ m−3 (ND ∼ 617) and 1 fg WHO-TEQ m−3 (ND ∼ 0.016). Elevated atmospheric levels of PCDD/Fs and DL-PCBs observed at residential/industrial sites and in the north-west of Korea, indicated a potential contribution and impacts of anthropogenic sources of PCDD/Fs and DL-PCBs. These levels were similar or lower than those previously reported in other ambient air surveys. Average concentrations of PCDD/Fs showed small seasonal variations (ANOVA analysis, p = 0.144). The highest concentrations of PCDD/Fs were observed during winter, followed by spring, autumn and summer. Atmospheric PCDD/Fs and DL-PCBs in South Korea rapidly decreased during the last 10 years (1998-2008), demonstrating the efficiency of stricter regulations and the application of best available technologies/best environmental practices at emission sources. Comparison of the congener profiles and principal component analysis showed that current atmospheric PCDD/Fs are mostly influenced by industrial sources and PCBs from old commercial PCB uses. Nationwide POPs monitoring will continue and allows an effective evaluation of the implementation of the Stockholm Convention on POPs.  相似文献   

16.
Since we demonstrated the natural formation of chloroform in soil, the question arose to which extent this contributes to the chloroform present in the atmosphere. Concentration gradients in soil air and atmospheric air of different forests were measured. Chloroform concentration gradients indicating emission occur in forest soils and the atmosphere under the canopy, whereas this was not observed for other chlorinated solvents. Above the canopy all concentration gradients observed for chloroform and 1,1,1-trichloroethane indicate deposition. The emission flux was measured using enclosures and calculated from the observed concentration gradients in soil air and atmospheric air. Wood-degrading areas and soils with a humic layer were found to emit up to 1000 ng chloroform m−2 h−1 and seem to be larger chloroform sources than the other areas of study. Rather unexpectedly, some points of one sampling site appeared to emit 1,1,1-trichloroethane, tetrachloromethane and tetrachloroethene. A reasonable agreement was found between the fluxes using enclosures and those derived from the concentration gradients in soil air and atmospheric air.  相似文献   

17.
One hundred ninety-five chemically speciated samples were collected from March 2003 to February 2005 in the Seoul Metropolitan area to investigate the characteristics of the major components in PM2.5 and to characterize the chemical variations between smog and non-smog events. The annual average PM2.5 concentration was 43 μg m−3 that is almost three times higher than the US NAAQS annual PM2.5 standard of 15 μg m−3. During this sampling period, smog and yellow sand events were observed on 27 and 10 days, respectively. The PM2.5 concentrations and its constituents during smog events were about two–three times higher than those during non-smog and yellow sand events. In particular, the mass fractions of secondary aerosols such as sulfate, nitrate, and ammonium during the smog events were higher than those of the other constituents. The mean concentration and mass fraction of secondary organic carbon (SOC) were highest during the winter smog events. Sulfate, nitrate and SOC that can have long residence times were important species during the smog events suggesting that regional scale sources rather than local sources were important. Five-day backward air trajectory analysis showed that the air parcels during smog events passed through the major industrial areas in China more often than those during non-smog events.  相似文献   

18.
The Deep Creek Lake Study of 1983 provided an opportunity to obtain emission samples from coal-fired power plants with a dilution sampler for mutagenicity testing. Stack and ambient samples of particulate matter were collected with a dilution sampler at three coal-fired power plants in West Virginia. Samples were sequentially extracted with cyclohexane (CX), dichloromethane (DCM) and acetone (ACE) and tested for mutagenicity in the Ames Salmonella/microsome assay using TA98 (-S9). For the stack samples, the CX, DCM and ACE fractions constituted 1.0, 0.7 and 98.1 percent of the total extractable organic material (EOM), respectively, compared to 28.5, 7.4 and 64.1 percent for the ambient samples. In contrast, the mutagenic activity of the organic fractions was concentrated in the CX and DCM fractions.

The cyclohexane- and dichloromethane-soluble fractions of the stack samples from all locations exhibited mutagenicity when tested in the plate incorporation assay. No significant response was observed with the acetone fraction. When tested with Kado's modification of the preincubation assay, the acetone-soluble fraction did exhibit mutagenic activity comparable to that of the other fractions when expressed in units of revertants per milligram of particular matter. Chemical analyses of one of the acetone-soluble fractions indicated that half of the mass was sulfuric acid while the remainder consisted of C, H and O. More than 30 peaks were detected in the high pressure liquid chromatogram of this fraction.

Although little mutagenic activity was detected in the polar ACE fraction of the diluted stack emissions samples with this single bioassay, in view of the large mass of this fraction, further investigation of the chemical composition and genotoxic activity of this fraction would be prudent.  相似文献   

19.
Membrane-enclosed copolymer (MECOPs) samplers containing crystalline copolymers of ethylvinylbenzene-divinylbenzene in polyethylene membranes were used to assess the influence of a steel complex on the level and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in ambient air. MECOPs were deployed at six sites in Pohang, Korea for 37 days (August 9, 2005–September 14, 2005). Fluorene, phenanthrene, anthracene, and fluoranthene were dominant PAHs with the highest contribution of phenanthrene (59%) to the total amount of vapor-phase PAHs. The spatial distribution of total PAHs in the vapor phase ranging from 76 to 1077 ng MECOP−1 and air dispersion modeling suggested that the steel complex was the major PAH source in Pohang. It was revealed that the major wind directions rather than the distance from the steel complex were a significant factor affecting the levels of PAHs at the sampling sites. Finally, we tried to convert MECOP concentrations (ng MECOP−1) to air concentrations (ng m−3) with the modified sampling rates (m3 day−1). This study demonstrates again that passive air samplers are useful tools for spatially resolved and time-integrated monitoring of semivolatile organic compounds (SOCs) in ambient air.  相似文献   

20.
The Pearl River Delta (PRD) is one of the most industrialized and urbanized regions in China. With rapid growth of the economy, it is suffering from deteriorating air quality. Non-methane hydrocarbons (NMHCs) were investigated at urban and suburban sites in Guangzhou (GZ), a rural site in PRD and a clean remote site in South China, in April 2005. Additional roadside samples in GZ and Qingxi (QX, a small industrial town in PRD), ambient air samples at the rooftop of a printing factory in QX and exhaust samples from liquefied petroleum gas (LPG)—fueled taxis in GZ were collected to help identify the source signatures of NMHCs. A large fraction of propane (47%) was found in exhaust samples from LPG-fueled taxis in GZ and extremely high levels of toluene (2.0–3.1 ppmv) were found at the rooftop of the printing factory in QX. Vehicular and industrial emissions were the main sources of NMHCs. The effect of vehicular emission on the ambient air varied among the three PRD sites. The impact of industrial emissions was widespread and they contributed greatly to the high levels of aromatic hydrocarbons, especially toluene, at the three PRD sites investigated. Leakage from vehicles fueled by LPG contributed mainly to the high levels of propane and n-butane at the urban GZ site. Ethane and ethyne from long-range transport and isoprene from local biogenic emission were the main contributors to the total hydrocarbons at the remote site. Diurnal variations of NMHCs showed that the contribution from vehicular emissions varied with traffic conditions and were more influenced by fresh emissions at the urban site and by aged air at the suburban and rural sites. Isoprene from biogenic emission contributed largely to the ozone formation potential (OFP) at the remote site. Ethene, toluene and m/p-xylene were the main contributors to the OFP at the three PRD sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号