首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The total (wet and dry) deposition of trace and major elements from the atmosphere was measured throughout 1 year at twelve sampling stations in the ‘Campo de Gibraltar’, an industrial zone where there are important residential areas. The data included in this paper have contributed to a better knowledge of the regional deposition of Al, Cr, Fe, Mn, Ni, Pb, V, Zn, Ca, Mg, K, Na, Cl, NH4+, NO3and SO42− in both soluble and insoluble form.  相似文献   

2.
Concentrations of major ions, SO42−, NO3, Cl, H+, Ca2+, K+, Mg2+, Ca2+ and conductivity were measured in approximately 300 daily, wet-only rain samples collected at a permanent rural station between 1993 and 1998. Concentrations of anthropogenic ions NH4+, SO42− and NO3 were among the highest values reported in whole EMEP network, suggesting that the Anatolian plateau is under strong influence of distant emission sources. Although transport of pollutants have significant influence on the chemical composition of precipitation, average pH of the rainwater is 6.2 due to extensive neutralization of acidity. Approximately 95% of the acidity in collected samples is neutralized, particularly in summer season. The neutralizing agents are primarily CaCO3 and NH3. Concentrations of crustal ions are higher in summer season due to enhanced resuspension of soil particles from dry surface soil. Concentrations of anthropogenic ions SO42− and NO3 do not change significantly between summer and winter due to higher intensity of rains in summer season. Although concentrations of ions measured in this study is among the highest reported in EMEP network, wet deposition fluxes are low compared to flux values reported for similar sites in Europe, due to low annual precipitation in the Anatolia. Wet deposition fluxes of all measured parameters are highly episodic. Source regions affecting chemical composition precipitation in the Central Anatolia is investigated using trajectory statistics.  相似文献   

3.
Measurements on size distribution of atmospheric aerosol were made at Dayalbagh, Agra during July to September 1998. A 4-stage cascade particle sampler (CPS - 105) which fractionates particles in sizes ranging between 0.7 and >10.9 μm, was used. Samples were collected on Whatman 41 filters. The filters were analyzed for the major water-soluble ions. The anions (F, Cl, NO3 and SO4) were analyzed by Dionex DX-500 ion chromatograph while atomic absorption and colorimetric techniques were used for the analysis of cations (Na, K, Ca and Mg) and NH4, respectively. The average mass of aerosol was found to be 131.6 μg m−3 and aerosol composition was found to be influenced by terrigeneous sources. The mass size distribution of total aerosol and the ions NH4, Cl, NO3, K, Ca, Mg, SO4 and Na was bimodal while that of F was unimodal. SO4, F, K and NH4 dominated in the fine mode while Ca, Mg, Cl and NO3 were in abundance in coarse fraction. Na was found in both coarse as well as fine mode. Coarse mode SO4 and NO3 have been ascribed to contribution from re-suspension of soil and formation by heterogeneous oxidation on soil derived particles. Preponderance of K in fine mode is attributed to emissions from vegetation and from burning of plant materials. Ca, Mg, Cl and NO3 are largely soil derived and hence dominate in coarse fraction. Equivalent ratios of NH4/(SO4+NO3) were calculated for both fine and coarse aerosols. The coarse mode ratio varied between 0.7 and 1.4 while in fine mode it ranged between 1.4 and 1.9. It shows that aerosol is basic, the basicity of coarse mode is due to higher concentration of soil-derived alkaline components while the basicity in fine mode is due to neutralization of acidity by NH3.  相似文献   

4.
Two-stage aerosol samples (PM10–2.5 and PM2.5) were collected at a coastal rural site located in the northeastern Mediterranean, between April 2001 and 2002. A total of 562 aerosol samples were analyzed for trace elements (Fe, Ti, Mn, Ca, V, Ni, Zn, Cr) and water-soluble ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl, Br, NO3, SO42−, C2O42− and MS:methane sulfonate). PM10, crustal elements, sea salt aerosols and NO3 were mainly associated with the coarse mode whereas non-sea salt (nss)SO42−, C2O42−; MS, NH4+, Cr and Ni were found predominantly in the fine fraction. Concentrations of aerosol species exhibited orders of magnitude change from day to day and the aerosol chemical composition is heavily affected by dust events under the influence of airflow from North Africa. During the sampling period, 11 specific mineral dust events of duration varying from 1 day to a week have been identified and their influence on the chemical composition of aerosols has been studied in detail. Ionic balance analysis performed in the coarse and fine aerosol fractions indicated anion and cation deficiency due to CO32− and H+, respectively. A relationship between nssSO42− and NH4+ denoted that sulfate particles were partially neutralized (70%) by ammonium. Excess-K/BC presented two distinct ratios for winter and summer, indicating two different sources: fossil fuel burning in winter and biomass burning in summer.  相似文献   

5.
This paper reports the results of over 2 years of measurements of several of the species comprising atmospheric SOx (=SO2+SO42−) and NOy (=NO+NO2 + PAN + HNO3+NO3+ organicnitrates + HONO + 2N2O5 …) at Whiteface Mountain, New York. Continuous real-time measurements of SO2 and total gaseous NOy provided data for about 50% and 65% of the period, respectively, and 122 filter pack samples were obtained for HNO3, SO2 and aerosol SO42−, NO3, H+ and NH4+. Concentrations of SO2 and NOy were greatest in winter, whereas concentrations of the reaction products SO42− and HNO3were greatest in summer. The seasonal variation in SO42− was considerably more pronounced than that of HNO3and the high concentrations of SO42− aerosol present in summer were also relatively more acidic than SO42− aerosol in other seasons. As a result, SO42− aerosol was the predominant acidic species present in summer, HNO3was predominant in other seasons. Aerosol NO3 concentrations were low in all seasons and appeared unrelated to simultaneous NOy and HNO3concentrations. These data are consistent with seasonal variations in photochemical oxidation rates and with existing data on seasonal variations in precipitation composition. The results of this study suggest that emission reductions targeted at the summer season might be a cost-effective way to reduce deposition of S species, but would not be similarly cost-effective in reducing deposition of N species. kwAcid deposition, seasonal variation, sulfate, nitrate, nitric acid, sulfur dioxide, oxides of nitrogen, hydrogen peroxide, ozone, air pollution, Adirondack Mountains  相似文献   

6.
Over a 1-year period 16.40g Clm−2, 10.35 g Na m−2, 2.11 g SO4-S m−2, 1.24g Mg m−2, 0.39 g K m−2, 0.37 g Ca m−2 and 0.21 g inorganic N m−2 were deposited in precipitation 450 m inland on the eastern coastal plain of sub-Antarctic Marion Island (46°54′S, 37°45′E). Dissolved PO4-P and organic forms of N were not detected in the precipitation samples. Concentrations of Cl, Na, Mg, Ca and K, as well as the total ionic concentration in the precipitation samples were significantly negatively correlated with the amount of precipitation. The ionic concentration order (Cl > Na > SO4-S > Mg > K ≈ Ca) in the precipitation was very similar to that in the surrounding ocean. It is likely that most of the inorganic N found in the precipitation originated in penguin rookeries on the nearby shore zone. A comparison is made between precipitation inputs of nutrients at the island and those at other subpolar sites in the S and N Hemispheres.  相似文献   

7.
A year-long field study to characterize the ionic species in PM2.5 was carried out in Shanghai and Beijing, China, in 1999–2000. Weekly samples of PM2.5 were collected using a special low flow rate (0.4 l min−1) sampler. In Shanghai, SO42− NO3 and NH4+ were the dominant ionic species, which accounted for 46%, 18% and 17% of the total mass of ions, respectively. Local SO2 emissions were an important source of SO42− in PM2.5 because the SO42− concentration was correlated with the SO2 concentration (r=0.66). The relatively stable SO42−/SO2 mass ratio over a large range of temperatures suggests that gas-phase oxidation of SO2 played a minor role in the formation of SO42−. The sum of SO42− and NO3 was highly correlated with NH4+ (r=0.96), but insufficient ammonium was present to totally neutralize the aerosol. In Beijing, SO42−, NO3 and NH4+ were also the dominant ionic species, constituting 44%, 25% and 16% of the total mass of water-soluble ions, respectively. Local SO2 emissions were an important source of SO42− in the winter since SO42− was correlated with SO2 (r=0.83). The low-mass SO42−/SO2 ratio (0.27) during winter, which had low humidity, suggests that gas-phase oxidation of SO2 was a major route of sulfate formation. In the summer, however, much higher mass ratios of SO42−/SO2 (5.6) were observed and were ascribed to in-cloud sulfate formation. The annual average ratio of NO3/SO42− was 0.4 and 0.6 in Shanghai and in Beijing, respectively, suggesting that stationary emissions were still a dominant source in these two cities.  相似文献   

8.
A sampling campaign of re-suspended road dust samples from 53 sites that could cover basically the entire Beijing, soil samples from the source regions of dust storm in August 2003, and aerosol samples from three representative sites in Beijing from December 2001 to September 2003, was carried out to investigate the characteristics of re-suspended road dust and its impact on the atmospheric environment. Ca, S, Cu, Zn, Ni, Pb, and Cd were far higher than its crustal abundances and Ca2+, SO42−, Cl, K+, Na+, NO3 were major ions in re-suspended road dust. Al, Ti, Sc, Co, and Mg in re-suspended road dust were mainly originated from crustal source, while Cu, Zn, Ni, and Pb were mainly derived from traffic emissions and coal burning, and Fe, Mn, and Cd were mainly from industrial emissions, coal combustion and oil burning. Ca2+ and SO42− mainly came from construction activities, construction materials and secondary gas-particle conversions, Cl and Na+ were derived from industrial wastewater disposal and chemical industrial emissions, and NO3 and K+ were from vehicle emissions, photochemical reactions of NOX, biomass and vegetable burning. The contribution of mineral aerosol from inside Beijing to the total mineral aerosols was ∼30% in spring of 2002, ∼70% in summer of 2002, ∼80% in autumn of 2003, ∼20% in PM10 and ∼50% in PM2.5, in winter of 2002. The pollution levels of the major pollution species, Ca, S, Cu, Zn, Ni, Pb, Fe, Mn, and Cd in re-suspended road dust reached ∼76%, ∼87%, ∼75%, ∼80%, ∼82%, ∼90%, ∼45%, ∼51%, and ∼94%, respectively. Re-suspended road dust from the traffic and construction activities was one of the major sources of pollution aerosols in Beijing.  相似文献   

9.
The effects of the burning of fireworks on air quality in Beijing was firstly assessed from the ambient concentrations of various air pollutants (SO2, NO2, PM2.5, PM10 and chemical components in the particles) during the lantern festival in 2006. Eighteen ions, 20 elements, and black carbon were measured in PM2.5 and PM10, and the levels of organic carbon could be well estimated from the concentrations of dicarboxylic acids. Primary components of Ba, K, Sr, Cl, Pb, Mg and secondary components of C5H6O42−, C3H2O42−, C2O42−, C4H4O42−, SO42−, NO3 were over five times higher in the lantern days than in the normal days. The firework particles were acidic and of inorganic matter mostly with less amounts of secondary components. Primary aerosols from the burning of fireworks were mainly in the fine mode, while secondary formation of acidic anions mainly took place on the coarse particles. Nitrate was mainly formed through homogeneous gas-phase reactions of NO2, while sulfate was largely from heterogeneous catalytic transformations of SO2. Fe could catalyze the formation of nitrate through the reaction of α-Fe2O3 with HNO3, while in the formation of sulfate, Fe is not only the catalyst, but also the oxidant. A simple method using the concentration of potassium and a modified method using the ratio of Mg/Al have been developed to quantify the source contribution of fireworks. It was found that over 90% of the total mineral aerosol and 98% of Pb, 43% of total carbon, 28% of Zn, 8% of NO3, and 3% of SO42− in PM2.5 were from the emissions of fireworks on the lantern night.  相似文献   

10.
The chemical composition of pollutant species in precipitation sampled daily or weekly at 10 sites in Ireland for the five-year period, 1994–1998, is presented. Sea salts accounted for 81% of the total ionic concentration. Approximately 50% of the SO42− in precipitation was from sea-salt sources. The proportion of sea salts in precipitation decreased sharply eastwards. In contrast, the concentration of NO3 and the proportion of non-sea-salt SO42− increased eastwards reflecting the closer proximity to major emission sources. The mean (molc) ratio of SO42−:NO3 was 1.6 for all sites, indicating that SO42− was the major acid anion.The spatial correlation between SO42−, NO3 and NH4+ concentrations in precipitation was statistically significant. The regional trend in NO3 concentration was best described by linear regression against easting. SO42− concentration followed a similar pattern. However, the regression was improved by inclusion of elevation. Inclusion of northing in the regression did not significantly improve any of the relationships except for NH4+, indicating a significant increase in concentrations from northwest to southeast.The spatial distribution of deposition fluxes showed similar gradients increasing from west and southwest to east and northeast. However, the pattern of deposition shows the influence of precipitation volume in determining the overall input. Mean depositions of sulphur and nitrogen in precipitation were ≈30 ktonnes S yr−1 and 48 ktonnes N yr−1 over the five-year period, 1994–1998, for Ireland.Least-squares linear regression analysis indicated a slight decreasing trend in precipitation concentrations for SO42− (20%), NO3 (13%) and H+ (24%) and a slight increasing trend for NH4+ (15%), over the period 1991–1998.  相似文献   

11.
Continuous measurement of PM10, PM2.5 and carbon (organic, elemental composition) concentrations, and samples of PM10 and PM2.5 collected on a polycarbonate membrane filter (Nuclepore®, pore size: 0.8 μm), were carried out during a period from December 1998 to January 1999 at Shinjuku in Tokyo in order to investigate the chemical characterization of particles in winter-night smog within a large area of the Japan Kanto Plain including the Tokyo Metropolitan area. These were measured using an ambient particulate monitor (tapered element oscillating microbalance—TEOM) and a carbon particulate monitor. Elemental compositions in the filter samples of PM10 and PM2.5 were determined by means of particle-induced X-ray emission (PIXE) analysis. Ionic species (anion: F, Cl, NO3, SO42− and C2O42−; cation: Na+, NH4+, K+, Ca2+ and Mg2+) in the filter samples were analyzed by ion chromatography. The temporal variation patterns of PM2.5 were similar to those of PM10 and carbon. PM2.5 made up 90% of the PM10 at a high concentration, and 70% at a low concentration. Concentrations of 22 elements in both the PM10 and PM2.5 samples were consistently determined by PIXE, and Na, Mg, Al, Si, S, Cl, K, Ca, Fe, Zn and Pb were found to be the major components. Among these S and Cl were the most dominant elements of the PM2.5 and PM10 at high concentrations. Ionic species were mainly composed of Cl, NO3, SO42− and NH4+. The component proportion of carbon, the other elements (total amount of measured elements other than S and Cl) and secondary-formed particles of PM2.5 was similar to that of PM10. The major component was carbon particles at a low concentration and secondary-formed particles at a high concentration. The proportion of NH4NO3 and NH4Cl plus HCl in secondary-formed particles at a high concentration, in particular, was as high as 90%.  相似文献   

12.
Agricultural waste burning is a widespread practice throughout the world but there is little information about its pollutant impact. This paper deals with a preliminary study of the pollution observed in Vitoria (Northern Spain) caused by cereal waste burning. The mean hourly flux of pollutants produced by cereal waste burning fires can reach values of 1.4 kt of CO2, 13 t of TPM and 3 t of NOx in the area around Vitoria. Measurements obtained in the area of emission and inside fire plumes show high ratios (NO2/NOx) indicating that nitrogen oxides emitted by the source undergo a rapid transformation in the same area of emission. Results relating to aerosol composition collected in Vitoria during burning periods show an increase in the concentration of K+, NO3 and Cl ions, that are inter-correlated. The modification of the ionic composition of aerosols also affects the chemistry of the rain collected in Vitoria. During the burning period, it is particularly noticeable that anthropogenic pollution (usually identifiable by the correlation between SO42− and NO3 concentrations) disappears, indicating the existence of an independent source of NO3 not linked to the SO42− source. Similar results were deduced studying BAPMON data collected in Spain during cereal waste burning. Finally, we note that ozone concentration measured at Vitoria is not affected by the pollution generated by the burning fires.  相似文献   

13.
The data set of N and S compound measurements from WATOX-85 has been examined in detail to assess that data quality and suitability for use in addressing the goals of the Western Atlantic Ocean Experiment. Accuracy estimates for particulate SO42− and NO3, SO2 and HNO3 have been made on the basis of the investigators' estimates and the results of intercomparisons. Intercomparisons of ground-based particulate SO42− and all filter SO2 and HNO3 measurements show them to be consistent with the 20% accuracies quoted by the investigators. Ground-based particulate NO3 and aircraft particulate SO42− show inconsistencies such that the accuracies can be no better than 28% and the aircraft particulate NO3 has an accuracy of no better than 60%.  相似文献   

14.
Concentrations of several major rainwater components were determined in rain events occurring during the early morning hours (12:00 midnight to 6:00 a.m.) and during the afternoon (12:00 noon to 6:00 p.m.) to examine possible diurnal variations. Generally, rainwater components with gas phase origins (H+, NO3, formaldehyde, H2O2, formic acid, acetic acid, pyruvic acid, oxalic acid, and lactic acid) had higher concentrations during p.m. rain events compared to a.m. events. Although source strengths of both biogenic and anthropogenic rainwater components are generally higher during the daytime, nocturnal removal of a wide variety of components in similar proportions (approximately 2–3× less at night) indicates a physical rather than a chemical process affecting diurnal variations. Rainwater components with aerosol origins (Cl, and SO42−) displayed the opposite diurnal pattern or showed no diurnal variation. Possible reasons for these variations include one or both of the following scenarios: (1) the formation of dew at night removes gas phase atmospheric gasses but not aerosols or (2) during the night, a marine air mass containing lower concentrations of all analytes and higher concentrations of Cl is advected into the area.  相似文献   

15.
The influence of soluble compounds leached from real atmospheric aerosol particles (size range Dae: 0.17–1.6 μm) and dissolved NO2 on S(IV) oxidation in aqueous solution is presented. Experiments were conducted with aerosol particles of two different origins (i.e., urban and industrial) and at concentrations of trace gases in the gas mixtures (SO2/air and SO2/NO2/air) typical for a polluted atmosphere. During the introduction of SO2/air into the aqueous aerosol suspensions under dark conditions at pH 4, the formation of SO42− was very slow with a long induction period. However, in the presence of NO2 the oxidation rate of dissolved SO2 in suspensions of aerosols from both origins increased substantially (about 10 times). The results suggest that soluble compounds eluted from atmospheric aerosols have not only a catalytic (e.g. Fe, Mn), but also a pronounced inhibiting effect (e.g., oxalate, formate, acetate, glycolate) on S(IV) autoxidation. When NO2 was also introduced into the aerosol suspensions, the inhibition was not so highly expressed. An explanation for this is that the radical chain mechanism is mainly initiated by the interaction of dissolved NO2 and HSO3. Therefore, at conditions typical for a polluted atmosphere dissolved NO2 can have a significant influence on the secondary formation of SO42−.  相似文献   

16.
Wet and dry deposition were monitored at the University of Michigan Biological Station in rural northern Michigan for three winters. Dry deposition was measured by both the conventional bucket method and by measuring increases in concentration in exposed, elevated snow samples. Average results of the two methods were in reasonable agreement. The cumulative wet and dry deposition quantities are in good agreement with snowpack accumulations until the first thaw period. Dry deposition to snow accounts for less than 15% of the total H+, SO2−4, NO3 and NH+4 and approximately 25% of the Ca 2+, Mg 2+, Na+, K+ and Cl during an average precipitation year. Snowpack measurements were also made under deciduous and red pine canopies. Decreases in H+ and NO3 were observed under the red pine canopy.  相似文献   

17.
This paper is intended to be used by specialists engaged in air and precipitation quality management on regional and continental scales. Major goals are to establish definition, methodology and specific values of background air and precipitation quality for sulfur (S) and nitrogen (N) species to be used in practical applications of air resources management. Major findings are the following:
  • 1.(a) 69% of SO2 and 63 % of NO2 concentration over Europe originate from continental scale anthropogenic sources,
  • 2.(b) 15% of precipitation sulfate and 11% of precipitation nitrate over Europe are contributed by hemispheric background,
  • 3.(c) hemispheric background pollution values for Europe were found as 1.25 μg (SO2-S)m−3, 0.80 μg (SO42−-S)m−3, 0.157 mg (SO42−-S)l−1 and 0.04 mg (NO3-N)ℓ−1.
  相似文献   

18.
Dimethyl sulfide (DMS) and atmospheric aerosols were sampled simultaneously over the Atlantic Ocean in the vicinity of Bermuda using the NOAA King Air research aircraft. Total and fine (50% cutoff at 2 μm diameter) aerosol fractions were sampled using two independent systems. The average nonsea-salt (nss)SO42− concentrations were 1.9 and 1.0 μg m−3 (as SO42−) for the total and the fine fractions in the boundary layer (BL) and 0.53 and 0.27 μg m−3 in the free troposphere (FT). Non-sea-salt SO42− in the two aerosol fractions were highly correlated (r = 0.90), however a smaller percentage (55%) was found in the fine aerosol near Bermuda relative to that (90%) near the North American continent. The BL SO42− concentrations measured in this study were higher than those measured by others at remote marine locations despite the fact that the 7-day air mass back trajectories indicated little or no continental contact at altitudes of 700 mb and below; the trajectories were over subtropical oceanic areas that are expected to be rich in DMS. DMS concentrations were higher near the ocean surface and decreased with increasing altitude within the BL; the average DMS concentration was 0.13 μg m−3. Trace levels of DMS were also measured in the FT (0.01 μg m−3). Computer simultation of the oxidation and removal of DMS in the marine atmosphere suggests that <50% of the SO42− observed could be related to the natural S cycle.  相似文献   

19.
In this study, we present ∼1 yr (October 1998–September 1999) of 12-hour mean ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCl), chloride (Cl), nitrate (NO3), nitric acid (HNO3), nitrous acid (HONO), sulfate (SO42−), and sulfur dioxide (SO2) concentrations measured at an agricultural site in North Carolina's Coastal Plain region. Mean gas concentrations were 0.46, 1.21, 0.54, 5.55, and 4.15 μg m−3 for HCl, HNO3, HONO, NH3, and SO2, respectively. Mean aerosol concentrations were 1.44, 1.23, 0.08, and 3.37 μg m−3 for NH4+, NO3, Cl, and SO42−, respectively. Ammonia, NH4+, HNO3, and SO42− exhibit higher concentrations during the summer, while higher SO2 concentrations occur during winter. A meteorology-based multivariate regression model using temperature, wind speed, and wind direction explains 76% of the variation in 12-hour mean NH3 concentrations (n=601). Ammonia concentration increases exponentially with temperature, which explains the majority of variation (54%) in 12-hour mean NH3 concentrations. Dependence of NH3 concentration on wind direction suggests a local source influence. Ammonia accounts for >70% of NHx (NHx=NH3+NH4+) during all seasons. Ammonium nitrate and sulfate aerosol formation does not appear to be NH3 limited. Sulfate is primarily associated ammonium sulfate, rather than bisulfate, except during the winter when the ratio of NO3–NH4+ is ∼0.66. The annual average NO3–NH4+ ratio is ∼0.25.  相似文献   

20.
The concentrations and characteristics of the major components in ambient fine particles in the urban city of Kaohsiung, Taiwan were measured and evaluated. PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and analyzed for water-soluble ion species using ion chromatography and for carbonaceous species using an elemental analyzer. It was found that SO42−, NO3, and NH4+ dominated the identifiable components, and occupied 42.2% and 90.0% of PM2.5 mass and total dissolved ionic concentrations. Carbonaceous species (organic and elemental carbon) accounted for 20.8% of PM2.5. The secondary aerosol formed through the NO2/SO2 gas-to-particle conversion was estimated based on the sulfur/nitrogen oxidation ratio (SOR/NOR), i.e., sulfate sulfur/nitrate nitrogen to total sulfur/total nitrogen. The average SOR and NOR values were 0.25 and 0.07 for PM2.5. The high SOR and NOR values obtained in this study suggested that there existed a secondary formation of SO42− from SO2 along with NO3 from NO2 in the atmosphere. The secondary organic carbon formed through the volatile organic compound gas-to-particle conversion was estimated from the minimum ratio between organic and elemental carbon obtained in this study, and was found to constitute 40.0% of the total organic carbon for PM2.5 (6.6% of the particle mass). The results obtained in this study suggest that the formation of secondary aerosols due to conversion from gaseous precursors is significant and important in urban locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号