共查询到4条相似文献,搜索用时 0 毫秒
1.
《Atmospheric environment (Oxford, England : 1994)》2005,39(23-24):4267-4277
Optical methods for counting and sizing cloud droplets and a wide range of cloud water sampling methods were used to characterize the atmospheric liquid phase during the FEBUKO cloud experiments. Results near cloud base as well as more than 300 m inside the hill cap clouds are presented, reflecting their inhomogeneous nature. The cloud droplet number varies from 50 to 1000 cm−3 and drop sizes between 1 and 20 μm diameter are most frequent. Variations in the liquid water content (LWC) and in the total ion content (TIC) are much smaller when the measurement position is deeper in the cloud. Near cloud base variability in updraft strength and, near cloud top, entrainment processes (droplet evaporation by mixing with drier air, aerosol and gas scavenging) disturb the adiabatic conditions and produce large variations in LWC and chemical composition. Six different active cloud water collectors and impactors were running side by side; they differ in the principle of sampling, in the throughput of cloudy air per unit time and in the calculated 50% cutoff diameter, which influence also their sampling efficiency. Two of them are designed to collect cloud water in two droplet size fractions. Three cloud events were selected by the FEBUKO team for detailed cloud physical and chemical analyses because they serve best the modelling demands concerning connected flow between the upwind, summit and downwind sites for process studies. Frequency distributions of the LWC and, also of the cloud base height are given as statistical parameters for both FEBUKO experiments. 相似文献
2.
Kristina Y. Nelson Dena W. McMartin Christopher K. Yost Ken J. Runtz Takaya Ono 《Environmental science and pollution research international》2013,20(8):5441-5448
The treatment process described in this research explores the impact of exposing water samples containing fecal coliforms to the radiation produced by single ultraviolet (UV) light-emitting diodes (LEDs) operating at 265 nm. UV LEDs are long lasting, compact in size and produce more efficient light output than traditional mercury-vapour bulbs, making them ideal for application in point-of-use disinfection systems, such as in remote areas. In this study, contaminated water samples containing either a pure culture of Escherichia coli or tertiary effluent from the City of Regina Wastewater Treatment Plant were used to study the application and efficiency of using UV LEDs for water disinfection. The results indicate that bacterial inactivation was achieved in a time-dependent manner, with 1- and 2.5-log E. coli reductions in water following 20 and 50 min of UV LED exposure, respectively. Ultraviolet radiation was less effective in reducing coliform bacteria in wastewater samples due to the elevated turbidity levels. Further work remains to be completed to optimize the application of UV LEDs for point-of-use disinfection systems; however, the results from this study support that bacterial inactivation using UV LEDs is possible, meriting further future technological development of the LEDs. 相似文献
3.
《Atmospheric environment(England)》1987,21(5):1137-1145
Cloud and rain water samples were collected on board aircraft by specially designed equipment, during three monsoon seasons, 1983, 1984 and 1985 in the Pune region in India. The samples were analyzed for major ionic components and pH, and the concentrations of all the ionic components were found to be significantly higher (35–161%) in cloud water than in rain water. In cloud water Cl contributed most (35%) to the total ionic concentration followed by Ca(21%) and Na(17%). Sulphate and nitrate concentrations, on the average, were low and were found to account for only 6% of the total ionic concentration. pH of cloud water and rain water was substantially higher than that of the CO2-equilibrated value (5.6). The findings suggest that influence of anthropogenic sources is negligible and that of soil dust which is alkaline is substantial on the pH and chemistry of cloud/rain water in India. 相似文献
4.
Totally 117 cloud/fog water samples were collected at the summit of Mt. Tai (1534 m a.s.l.)—the highest mountain in the Northern China Plain. The results were investigated by a combination of techniques including back trajectory model, regional air quality and dust storm models, satellite observations and Principal Component Analysis. Elemental concentrations were determined by Inductively Coupled Plasma Mass Spectrometry, with stringent quality control measures. Higher elemental concentrations were found at Mt. Tai compared with those reported by other overseas studies. The larger proportions and higher concentrations of toxic elements such as Pb and As in cloud/fog water compared with those in rainwater at Mt. Tai suggests higher potential hazards of cloud/fog water as a source of contamination in polluted areas to the ecosystem. Peak concentrations of trace elements were frequently observed during the onset of cloud/fog events when liquid water contents of cloud/fog water were usually low and large amount of pollutants were accumulated in the ambient air. Inverse relationship between elemental concentrations and liquid water contents were only found in the samples with high electrical conductivities and liquid water contents lower than 0.3 g m−3. Affected mainly by the emissions of steel industries and mining activities, air masses transported from south/southwest of Mt. Tai were frequently associated with higher elemental concentrations. The element Mn is attributed to play an important role in the acidity of cloud/fog water. The composition of cloud/fog water influenced by an Asian dust storm event was reported, which was seldom found in the literature. 相似文献