首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
It is well known that turbulent dispersion influences chemical reactions and that computation of reactant concentrations or mean chemical reaction rates can suffer of serious error when small-scale atmospheric processes' effects on chemical transformation are neglected. A quantity that gives a measure of the influence of turbulent dispersion on second-order chemical reaction rates is the intensity of segregation. A nonparametric estimator based on the kernel method aimed at measuring the intensity of segregation is proposed. Numerical benchmark tests, in the case of a Gaussian plume, are performed to study the suitability of this technique. The estimator works well, especially for small and moderate separation from the plume centreline and generally in the smooth parts of the estimated function. The effective reaction rate is computed and the percentage error emerges to be less than 5% in the best estimation intervals, and less than 40% in the worst. A method to reduce percentage error is introduced and improved performances are observed. The estimator proposed turns out to be particularly suitable for Lagrangian air quality modelling because it permits conservation of the grid independence.  相似文献   

2.
The mixing processes of the aerosol particles from an outdoor environment in a ventilated scale chamber were experimentally studied. The particles were classified into five groups by size: 0.3–0.5 μm, 0.5–1.0 μm, 1.0–3.0 μm, 3.0–5.0 μm and 5.0–10.0 μm. The developing process for the concentration of each particle group was measured in different kinds of flow fields.The results show that the flow field configuration can effectively influence the dispersion time rate of the particles at certain positions. The increase in particle diameter can decrease the dispersion time rate. When the gas flow velocity is high, the particle dispersion time rate is independent of particle size; but when the gas flow velocity is low, particle size can significantly affect the particle dispersion time rate because the turbulent diffusion becomes important in the air and particle transport. The uniformity of the particle concentration for certain positions in steady state tends to be controlled by the inflow velocity, flow field configuration and the particle diameters.  相似文献   

3.
The phenomenon of coagulation settling in liquid suspensions has a variety of applications, including mineral processing, treatment of industrial effluents, and municipal sewage sludge purification. This study was to investigate the coagulation settling characteristics of fine-grind natural zeolite and evaluate the removal efficiency of contaminants simultaneously in static and turbulent flow. A series of column experiments were conducted to pattern the characteristics of spatial and temporal variation of coagulation settling and removal contaminants in static and turbulent flow. The results indicated that the suspended solid concentration presented an apparent exponential decay with coagulation settling time in static flow (R 2 ?>?0.99), coagulation settling rate of the fine zeolite-suspended solid in static flow was between 0.005 and 0.05 cm/s obtained from the repeat depth suction method. The relation between average C/C 0 of pollutants and suspended solid concentration was exponential before the settlement for 24 h and that was the line after the settlement for 24 h. Several various models were presented to highlight the coagulation settling characteristics of fine-grind natural zeolite in static and turbulent flow. Compared to hydrostatic settling experiments, zeolite-suspended solid presented better removal efficiency of pollutants and greater removal rate of pollutants in turbulent flow.  相似文献   

4.
The airway irritation of (+)-α-pinene, ozone, mixtures thereof, and formaldehyde was evaluated by a mouse bioassay, in which sensory irritation, bronchoconstriction, and pulmonary irritation were measured. The effects are distinguished by analysis of the respiratory parameters. Significant sensory irritation (assessed from reduction of mean respiratory rate) was observed by dynamic exposure of the mice, over a period of 30 min, to a ca. 22 s old reaction mixture of ozone and (+)-α-pinene from a Teflon flow tube. The starting concentrations were 6 ppm and 80 ppm, respectively, which were diluted and let into the exposure chamber. About 10% ozone remained unreacted (0.4 ppm), <0.2 ppm formaldehyde, <0.4 ppm pinonaldehyde, <2 ppm formic acid, and <1 ppm acetic acid were formed. These concentrations, as well as that of the unreacted (+)-α-pinene (51 ppm), were below established no effect levels. The mean reduction of the respiratory rate (30%) was significantly different (p≪0.001) from clean air, as well as from exposure of (+)-α-pinene, ozone, and formaldehyde themselves at the concentrations measured. Addition of the effects of the measured residual reactants and products cannot explain the observed sensory irritation effect. This suggests that one or more strong airway irritants have been formed. Therefore, oxidation reactions of common naturally occurring unsaturated compounds (e.g., terpenes) may be relevant for indoor air quality.  相似文献   

5.
A two-dimensional, steady, kε turbulence model was used to investigate the high Reynolds number skimming flow field of an urban street canyon. We describe the critical canyon width-to-height ratios that distinguish a cascade of vortex patterns that form in an urban street canyon. Details of the flow field are reported that includes the structure of the mean flow field, turbulent kinetic energy, turbulent length scale, turbulent eddy viscosity, and Reynolds stress for three typical different aspect ratios, W/H, of a street canyon. The consequences of vortex layering on vertical transport are explored.  相似文献   

6.
Addition of urea-based antifreeze admixtures during cement mixing in construction of buildings has led to increasing indoor air pollution due to continuous transformation and emission of urea to gaseous ammonia in indoor concrete wall. In order to control ammonia pollution from indoor concrete wall, the aqueous dispersion was firstly prepared with nano-scale TiO2 photocatalysts and dispersing agent, and then mixed with some textile additives to establish a treating bath or coating paste. Cotton woven fabrics were used as the support materials owing to their large surface area and large number of hydrophilic groups on their cellulose molecules and finished using padding and coating methods, respectively. Two TiO2-loaded fabrics were obtained and characterized by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). Moreover, a specifically designed ammonia photocatalytic system consisting of a small environmental chamber and a reactor was used for assessing the performance of these TiO2-loaded fabrics as the wall cloth or curtains used in house rooms in the future and some factors affecting ammonia decomposition are discussed. Furthermore, a design equation of surface catalytic kinetics was developed for describing the decomposition of ammonia in air stream. The results indicated that increasing dosage of the TiO2 aqueous dispersion in treating bath or coating paste improved the ammonia decomposition. And ammonia was effectively removed at low ammonia concentration or gas flow rate. When relative humidity level was 45%, ammonia decomposition was remarkably enhanced. It is the fact that ammonia could be significantly decomposed in the presence of the TiO2-padded cotton fabric. Whereas, the TiO2-coated cotton fabric had the reduced photocatalytic decomposition of ammonia and high adsorption to ammonia owing to their acrylic binder layer. Finally, the reaction rate constant k and the adsorption equilibrium constant K values were determined through a curve-fitting method and the TiO2-padded cotton fabric had the higher k value and lower K value than the TiO2-coated cotton fabric.  相似文献   

7.
The ventilation and pollutant transport in a two-dimensional (2D) street canyon of building-height-to-street-width (aspect) ratio h/b = 1 under different unstable stratifications were examined. To characterize the combined wind-buoyancy-driven flow and pollutant transport at different Richardson number Ri, a computational fluid dynamics (CFD) model based on the Reynolds-averaged Navier–Stokes (RANS) equations with the Renormalization Group (RNG) k ? ε turbulence model was adopted. Unlike the isothermal condition, a secondary recirculation is initiated at the ground-level windward corner of the street canyon once the unstable stratification is switched on (Ri < 0). It traps the ground-level pollutant leading to elevated pollutant concentration there. As Ri further decreases, the enlarging secondary recirculation enables direct pollutant removal from its core to the shear layer that offsets the ground-level pollutant accumulation. The ventilation and pollutant removal performance under different unstable stratifications are compared by the air (ACH) and pollutant (PCH) exchange rates, and pollutant retention time (τ). Both the mean and turbulent components of ACH are found to increase with decreasing Ri, suggesting that unstable stratification promotes ventilation in street canyons. Moreover, the CFD results agree well with our theoretical model that ACH2 varies linearly with Ri. Turbulent transport originally dominates the pollutant removal under isothermal condition. However, progressive domination of pollutant removal by mean wind can be observed with decreasing stability (decreasing Ri from 0 to ?10.6). The critical value is estimated to be Ri = ?8, below which mean wind is the major pollutant removal carrier. Reduction in τ is also observed with decreasing Ri. Hence, in unstable stratification, pollutant resides shorter time in the street canyon compared with its isothermal counterpart, and the ventilation and pollutant removal are more favorable.  相似文献   

8.
This wind-tunnel study has been conducted as part of a collaborative effort to investigate the effect of large surface roughness on the entrainment of air from a neutrally stable simulated atmospheric boundary layer into a continuous dense-gas plume. The present study examined the entrainment rates of dense-gas plumes as they were transported over two surfaces with similar geometry but significantly different roughness lengths (factor of 6). Extensive measurements of the flow and plume structures over a wide range of source Richardson numbers (Ri*) are reported. Carbon dioxide was released from a two-dimensional source in order to obtain a plume with virtually constant Ri*. Over the small roughness, the plume depths were generally large compared with the element heights, whereas over the large roughness, plume depths were comparable with the element heights. Retardation of mean velocities in the lower levels of the dense plumes (with compensating increases in the upper levels) was observed, as well as strong suppression of turbulence over quite large fractions of the boundary-layer depth. These effects increased as Ri* increased. Propagation of dense gas was observed upstream of the source due to gravity spreading. The flow within the plumes was observed to become laminar at the larger Ri*. The primary measurements comprised longitudinal surface concentration profiles. Where the plumes were fully turbulent, the plots of inverse concentration versus downwind distance formed reasonably straight lines. The sought-after entrainment velocities are proportional to the slopes of these lines and were found to diminish quite rapidly with Ri*. More in-depth analyses and intercomparisons with the results of the other laboratories are contained in a companion paper in this same volume (Briggs et al., 2001, Atmospheric Environment 35, 2265–2284).  相似文献   

9.
Recent investigations of ambient aerosol behavior over urban areas have pointed out the need for controlled experimental data to link together field investigation results and computer simulation studies. This paper describes the design considerations, construction details and operating parameters of a large (8000 ft3) outside reaction chamber constructed in rural North Carolina. The chamber is triangular in cross-section, 20 ft wide, 20 ft high and 40 ft long, and is covered with clear 5 ml Teflon film. The outdoor location of the chamber permits the reaction volume to be exposed to the natural conditions of temperature and solar radiation. A recirculating air system allows the air in the chamber to be passed through an “absolute” fiberglas filter for adjustment of condensation nuclei concentration and also through driers for humidity adjustment. Internal fans are provided for mixing of the chamber contents without use of the recirculating system so that various degrees of turbulence can be approximated. A sampling line from the chamber passes directly to an instrument room, located directly under the chamber, where direct analyses for particle composition, concentration, and size, and gas composition and concentration are carried out. Parameters which can be varied in this system include number, size, distribution, and chemical composition of pre-existing nuclei, as well as humidity, solar radiation, temperature, and trace gas concentration and composition.  相似文献   

10.
A combined Lagrangian stochastic model with a micromixing sub-model is used to estimate the fluctuating concentrations observed in two wind tunnel experiments. The Lagrangian stochastic model allows fluid trajectories to be simulated in the inhomogeneous flow, while the mixing model accounts for the dissipation of fluctuations using the interaction by exchange with the mean (IEM) mechanism. The model is first tested against the open terrain, wind tunnel data of Fackrell, J.E. and Robins, A.E. [1982. Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. Journal of Fluid Mechanics 117, 1–26] and shows good agreement with the observed mean concentrations and fluctuation intensities. The model is then compared with the wind tunnel simulation of a two-dimensional street canyon by Pavageau, M. and Schatzmann, M. [1999. Wind tunnel measurements of concentration fluctuations in an urban street canyon. Atmospheric Environment 33, 3961–3971]. Despite the limitations of the k–ε turbulence scheme and the IEM mixing mechanism, the model reproduces the fluctuation intensity pattern within the canyon well. Overall, the comparison with both sets of wind tunnel experiments are encouraging, and the simplicity of the model means that predictions in a complex, three-dimensional geometry can be produced in a practicable amount of time.  相似文献   

11.
We present a numerical study of scalar transport released from a line source downstream of a square obstacle to investigate the capabilities and limitations of gradient-transport modeling in predicting atmospheric dispersion. The standard k? and kω models and a Reynolds Stress Transport closure are employed and compared to predict the time-averaged turbulent flow field, while a standard gradient–diffusion model is initially adopted to relate the scalar flux to mean gradients of the concentration field. The analysis of two algebraic closures for turbulent scalar fluxes based on the generalized-gradient–diffusion hypothesis and its quadratic extension is also presented. In spite of the rather simple flow setup, where both the flow and the scalar fields can be assumed homogeneous in the spanwise direction, the analysis clarifies several critical issues concerning gradient-transport type models. We established the dominant role of predicted turbulent kinetic energy on scalar dispersion when a scalar diffusivity is employed, irrespectively of the Reynolds stress closure adopted for the averaged momentum equation. Moreover, the standard gradient–diffusion hypothesis failed to predict the streamwise component of the scalar flux, which is characterized by a counter-gradient-transport mechanism. Although the resulting contribution in the averaged scalar transport equation is small in the present flow configuration, this limitation can become severe for strongly inhomogeneous flows in the presence of point sources, where the spread of the scalar plume is essentially three-dimensional. The predictive capabilities of gradient-transport type modeling are found clearly improved using algebraic closures, which appear to represent a promising tool for predicting atmospheric dispersion in complex flows when unsteady transport mechanisms are not dominant.  相似文献   

12.
A Wind Tunnel Study of Gaseous Pollutants in City Street Canyons   总被引:1,自引:0,他引:1  
Steady state mean concentrations of tracer gas were measured in a 400:1 scale model of an idealized city with variable geometry placed within a wind tunnel at various orientations to the mean flow for a free stream velocity of 6.8 ft/sec. The tracer gas was released from two parallel line sources to simulate lanes of traffic in an effort to quantify the persistence of pollution as well as the mean values realized at street levels. An aerodynamically rough turbulent boundary layer of neutral thermal stratification was employed to simulate the atmosphere. Values of concentration measured in the model city were converted to prototype concentrations in ppm and compared to National Ambient Air Quality Standards. It was shown that single isolated structures may cause favorable mixing of pollution downwind but very high concentrations exist in the immediate leeward vicinity of the building. Two favorable geometries for city blocks tested were found to reduce pedestrian exposure to pollution both near heavy traffic congestion and downwind. It was concluded that the pollutant dilution was controlled by the mean flow rather than by turbulent diffusion and that the lateral spread of the plume was slight as one proceeded downwind of the line source. The combination of favorable geometry and higher dilution velocities may bring pollution levels down to existing Air Quality Standards. The body of information presented in this paper should interest city planners and air quality monitoring personnel, as well as those researchers attempting to study and model flow in city street canyons. It provides order of magnitude estimates on pedestrian and office worker exposure to pollutants under a wide range of conditions.  相似文献   

13.
Ozone pollution in the boundary layer results from photoactivated chemistry of primary pollutants released at the ground. As emissions are highly inhomogeneous in space and time and some chemical time-scales are of the order or larger than dynamical time-scales, it is admitted that turbulent transport and mixing is a key factor in ozone production. We study the interaction between chemistry and convective boundary layer turbulent with a large eddy simulation model coupled to CHIMERE, a detailed chemical model, over a 10×10km domain. Our results show that when emissions are concentrated over a limited area, strong values of segregation between chemical species are obtained over the first two active hours during the morning, leading to significant impact in terms of pollutants concentration. After 3 h, for each heterogeneous emission case considered, segregation drops to a few percents for most compounds pairs, due to the strong convective mixing of the boundary layer.  相似文献   

14.
Reactive pollutant dispersion in an urban street canyon with a street aspect ratio of one is numerically investigated using a computational fluid dynamics (CFD) model. The CFD model developed is a Reynolds-averaged Navier–Stokes equations (RANS) model with the renormalization group (RNG) k–ε turbulence model and includes transport equations for NO, NO2, and O3 with simple photochemistry. An area emission source of NO and NO2 is considered in the presence of background O3 and street bottom heating (ΔT=5 °C) with an ambient wind perpendicular to the along-canyon direction. A primary vortex is formed in the street canyon and the line connecting the centers of cross-sectional vortices meanders over time and in the canyon space. The cross-canyon-averaged temperature and reactive pollutant concentrations oscillate with a period of about 15 min. The averaged temperature is found to be in phase with NO and NO2 concentrations but out of phase with O3 concentration. The photostationary state defect is small in the street canyon except for near the roof level and the upper downwind region of the canyon and its local minimum is observed near the center of the primary vortex. The budget analysis of NO (NO2) concentration shows that the magnitude of the advection or turbulent diffusion term is much larger (larger) than that of the chemical reaction term and that the advection term is largely balanced by the turbulent diffusion term. On the other hand, the budget analysis of O3 concentration shows that the magnitude of the chemical reaction term is comparable to that of the advection or turbulent diffusion term. The inhomogeneous temperature distribution itself affects O3 concentration to some extent due to the temperature-dependent photolysis rate and reaction rate constant.  相似文献   

15.
HO2 radical concentrations were measured by a laser-induced fluorescence instrument for three nighttime periods during the intensive field campaign at Rishiri Island, Japan, in June 2000. The HO2 mixing ratio had temporal variations around its average of 4.2±1.2 (1σ) pptv and showed a positive correlation with the summed mixing ratio of four monoterpene species, α-pinene, β-pinene, camphene, and limonene, that sometimes reached 1 ppbv. Our model calculations suggested that ozonolysis reactions of monoterpenes were the main source of nighttime radicals and they explained 58% of measured HO2 concentration levels. The model roughly reproduced the dependence of the HO2 mixing ratio on the square root of the radical production rate due to the ozonolysis reactions of the monoterpenes. However, the absolute HO2 mixing ratio was significantly underpredicted by the model. We discuss possible reasons in terms of misunderstood RO2 chemistry, RO2 interference with HO2 observations, unknown radical production process associated by high NO2 mixing ratio, and the contribution of unmeasured olefinic species to radical production via their reactions with ozone.  相似文献   

16.
This work summarizes the results of numerical investigations and in situ measurements for turbulent combustion in a full-scale rotary kiln incinerator (RKI). The three-dimensional (3D) governing equations for mass, momentum, energy, and species, together with the kappa - epsilon turbulence model, are formulated and solved using a finite volume method. Volatile gases from solid waste were simulated by gaseous CH4 distributed nonuniformly along the kiln bed. The combustion process was considered to be a two-step stoichiometric reaction for primary air mixed with CH4 gas in the combustion chamber. The mixing-controlled eddy-dissipation model (EDM) was employed to predict the conversion rates of CH4, O2, CO2, and CO. The results of the prediction show that reverse flows occur near the entrance of the first combustion chamber (FCC) and the turning point at the entrance to the second combustion chamber (SCC). Temperature and species are nonuniform and are vertically stratified. Meanwhile, additional mixing in the SCC enhances postflame oxidation. A combustion efficiency of up to 99.96% can be achieved at approximately 150% excess air and 20-30% secondary air. Reasonable agreement is achieved between numerical predictions and in situ measurements.  相似文献   

17.
Airborne particle number concentrations and size distributions as well as CO and NOx concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×103 cm−3 and on weekends (5.9±0.2)×103 cm−3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×104 and 9.6×104 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 105 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NOx concentrations and a higher increase of about 70% in particle number concentration.  相似文献   

18.
A new technique to generate thick turbulent boundary layers In relatively short distances, which is capable of modifying and controlling rapidly the mean and unsteady profiles of the simulated layers, is presented. The increased thickness is achieved in the "I.IT. Environmental Wind Tunnel" by providing large momentum defects at the wall through upstream oriented, spanwise discrete wall jets, with changeable jet velocities and controllable jet angles. Various mean velocity profiles of the boundary layer (which can be represented by a wide range of power law exponents) are obtained at the same streamwise position using different settings of the counter-jet parameters and different types of artificial surface roughness. The transverse uniformity of these layers is also documented. Selected measurements of the flow field in the vicinity of a "building" model tested in three surface layers are compared in order to examine the sensitivity of measured effects to changes in the surface layer characteristics. Viewing the flow field with the aid of the modular flow concept, changes in the wake of the "building," in the flow above its roof and in the shear layer spreading downstream from its top are recorded through profiles of mean velocity and turbulence intensity. The effect of the wind direction with respect to the model is also investigated.  相似文献   

19.
A mathematical model has been developed for absorption of SO2 from flue gases using lime slurry in Turbulent Contact Absorbers (TCA). In this model, the TCA was simulated by considering it as a falling film absorption system. Turbulent effects were taken into account by using eddy viscosity and eddy diffusivity. The system of partial differential equations of mass transfer with moving boundaries was solved numerically in order to obtain the concentration profiles of the reactants, the thickness of the reaction zone and the outlet gas concentration. A bench-scale TCA was built up, and the mathematical model was evaluated against experimental data obtained from the built device. The model predictions showed good agreement with the experimental data and literature data.  相似文献   

20.
On June 5 and 6 of 1980, two parallel plume oxidation studies were carried out in the vicinity of the Tennessee Valley Authority's Colbert Steam Plant. One study was performed in a smog chamber into which stack gases were injected and mixed with ambient air. The other study included direct airborne sampling of the power plant plume. Atmospheric oxidation rates for the conversion of SO2 to SO4 2- and the removal rates of NO x (which is presumably the rate of NO3 - formation) were estimated for both studies. The SO2 to SO4 2- rate coefficients were found to be 0.022 ± 0.009 h-1 for both chamber experiments and the first airborne sampling day. For the second day, a rate constant of 0.041 ± 0.052 h-1 was estimated from the aircraft data. The large deviation in this value is explained by the fact that the plume from the power plant combined and reacted with the urban plume from the city of Florence, AL. The formation of a very large "O3 bulge" on this day is also attributed to the mixed plumes. The first order rate coefficients for NO x removal were estimated to be 0.27 ± 0.14 h-1 for both chamber experiments and the first airborne sampling day. A NO x removal rate could not be determined for the second airborne sampling day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号