首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A year-long field study to characterize the ionic species in PM2.5 was carried out in Shanghai and Beijing, China, in 1999–2000. Weekly samples of PM2.5 were collected using a special low flow rate (0.4 l min−1) sampler. In Shanghai, SO42− NO3 and NH4+ were the dominant ionic species, which accounted for 46%, 18% and 17% of the total mass of ions, respectively. Local SO2 emissions were an important source of SO42− in PM2.5 because the SO42− concentration was correlated with the SO2 concentration (r=0.66). The relatively stable SO42−/SO2 mass ratio over a large range of temperatures suggests that gas-phase oxidation of SO2 played a minor role in the formation of SO42−. The sum of SO42− and NO3 was highly correlated with NH4+ (r=0.96), but insufficient ammonium was present to totally neutralize the aerosol. In Beijing, SO42−, NO3 and NH4+ were also the dominant ionic species, constituting 44%, 25% and 16% of the total mass of water-soluble ions, respectively. Local SO2 emissions were an important source of SO42− in the winter since SO42− was correlated with SO2 (r=0.83). The low-mass SO42−/SO2 ratio (0.27) during winter, which had low humidity, suggests that gas-phase oxidation of SO2 was a major route of sulfate formation. In the summer, however, much higher mass ratios of SO42−/SO2 (5.6) were observed and were ascribed to in-cloud sulfate formation. The annual average ratio of NO3/SO42− was 0.4 and 0.6 in Shanghai and in Beijing, respectively, suggesting that stationary emissions were still a dominant source in these two cities.  相似文献   

2.
Time-resolved measurements of SO2, sulfate, particulate carbon and trace metal (Pb, As, K, Mn, Fe and V) concentrations were performed simultaneously at four locations in Ljubljana, Yugoslavia, during February and April of 1985. During the winter three different SO42− formation regimes are identified: A—morning period coinciding with maximum emissions and high humidity resulting in maximum SO42− concentrations, with the sulfate formation during this period attributed to fast heterogeneous, aqueous oxidation of local SO2 involving combustion products; B—late evening period with low humidity and high emissions when most SO42− is primary; C—the remainder of the day when SO42− appears to be of a regional origin and formed by a combination of heterogeneous and homogeneous processes. During the non-heating season, the SO42− appears to be of regional origin.  相似文献   

3.
Fog water, aerosol, and gas were separately collected at Mt. Rokko (altitude 931 m) in Kobe, Japan, using a new sampling method at a mountainous site near a highly industrialized area. The fog water was collected by an active string-fog collector and the aerosol and gas by using the filter pack method. Using plural filter packs and controlling or switching the airflow before, during, and after a fog event made it possible to collect the fog water, aerosol, and gas separately. Nitrate species such as NO3(p) and HNO3(g) were effectively scavenged by fog water, while sulfur species such as SO42−(p) and SO2(g) could not be easily and effectively scavenged because of the poor solubility of SO2(g). This difficulty was experimentally examined through an in situ investigation. Ion species (especially Na+(p) and Ca2+(p)) which form coarse particles were easily and effectively scavenged by fog water. On the other hand, the difficulty of scavenging Mg2+(p) could not be explained by particle size.  相似文献   

4.
Concentrations of several major rainwater components were determined in rain events occurring during the early morning hours (12:00 midnight to 6:00 a.m.) and during the afternoon (12:00 noon to 6:00 p.m.) to examine possible diurnal variations. Generally, rainwater components with gas phase origins (H+, NO3, formaldehyde, H2O2, formic acid, acetic acid, pyruvic acid, oxalic acid, and lactic acid) had higher concentrations during p.m. rain events compared to a.m. events. Although source strengths of both biogenic and anthropogenic rainwater components are generally higher during the daytime, nocturnal removal of a wide variety of components in similar proportions (approximately 2–3× less at night) indicates a physical rather than a chemical process affecting diurnal variations. Rainwater components with aerosol origins (Cl, and SO42−) displayed the opposite diurnal pattern or showed no diurnal variation. Possible reasons for these variations include one or both of the following scenarios: (1) the formation of dew at night removes gas phase atmospheric gasses but not aerosols or (2) during the night, a marine air mass containing lower concentrations of all analytes and higher concentrations of Cl is advected into the area.  相似文献   

5.
Dimethyl sulfide (DMS) and atmospheric aerosols were sampled simultaneously over the Atlantic Ocean in the vicinity of Bermuda using the NOAA King Air research aircraft. Total and fine (50% cutoff at 2 μm diameter) aerosol fractions were sampled using two independent systems. The average nonsea-salt (nss)SO42− concentrations were 1.9 and 1.0 μg m−3 (as SO42−) for the total and the fine fractions in the boundary layer (BL) and 0.53 and 0.27 μg m−3 in the free troposphere (FT). Non-sea-salt SO42− in the two aerosol fractions were highly correlated (r = 0.90), however a smaller percentage (55%) was found in the fine aerosol near Bermuda relative to that (90%) near the North American continent. The BL SO42− concentrations measured in this study were higher than those measured by others at remote marine locations despite the fact that the 7-day air mass back trajectories indicated little or no continental contact at altitudes of 700 mb and below; the trajectories were over subtropical oceanic areas that are expected to be rich in DMS. DMS concentrations were higher near the ocean surface and decreased with increasing altitude within the BL; the average DMS concentration was 0.13 μg m−3. Trace levels of DMS were also measured in the FT (0.01 μg m−3). Computer simultation of the oxidation and removal of DMS in the marine atmosphere suggests that <50% of the SO42− observed could be related to the natural S cycle.  相似文献   

6.
Concentrations of 23 elements plus NO3, SO42− and Cl were determined for samples collected continuously every 3 or 6 h during 22–27 July, 1985 at a suburban site in Karachi, Pakistan. Concentrations of lithophilic elements and several anthropogenic elements were ~ 80 % higher during daytime than at night. These elevated levels were attributed to daytime increases in wind velocity and anthropogenic activity. Factor analysis showed that ~ 50% of the variance was associated with soil, and ~ 14 % each with oceanic Na and Cl, anthropogenic Sb and Pb, and Zn, Se and SO42−. A cement (limestone/dolomite) factor was not separated even though Ca and Mg concentrations were unusually high and a cement factory was located nearby. This led to an investigation of a chemical approach to determine the sources. Concentrations of Na, Mg and Ca were determined in water-extracts of the samples. Assuming soluble Na (~ 92 % of total) to be sea derived, marine components of Mg, SO42−, Ca and Br were determined. Solubility considerations were then used to reveal the cement source and apportion the aerosol sources. On the average, approximately 48 % of the total aerosol mass could be accounted for by the ‘cement’ and ‘soil’ components; about 12 % by the ‘sea salt’, about 3% by the ‘fossil fuel’ SO42− (as (NH4)2SO4); about 1 % by the NO3 (as NH4NO3); the remaining 36 % of the aerosol mass was unassigned.  相似文献   

7.
A radiation fog physics, gas- and aqueous-phase chemistry model is evaluated against measurements in three sites in the San Joaquin Valley of California (SJV) during the winter of 1995. The measurements include for the first time vertically resolved fog chemical composition measurements. Overall the model is successful in reproducing the fog dynamics as well as the temporal and spatial variability of the fog composition (pH, sulfate, nitrate, and ammonium concentrations) in the area. Sulfate production in the fog layer is relatively slow (1–4 μg m−3 per fog episode) compared to the episodes in the early 1980s because of the low SO2 concentrations in the area and the lack of oxidants inside the fog layer. Sulfate production inside the fog layer is limited by the availability of oxidants in the urban areas of the valley and by SO2 in the more remote areas. Nitrate is produced in the rural areas of the valley by the heterogeneous reaction of N2O5 on fog droplets, but this reaction is of secondary importance for the more polluted urban areas. The gas-phase production of HNO3 during the daytime is sufficient to balance the nitrate removed during the nighttime fog episodes. Entrainment of air from the layer above the fog provides another source of reactants for the fog layer. Wet removal is one of most important processes inside the fog layer in SJV. We estimate based on the three episodes investigated during IMS95 that a typical fog episode removes 500–2000 μg m−2 of sulfate, 2500–6500 μg m−2 of nitrate, and 2000–3500 μg m−2 of ammonium. For the winter SJV valley the net fog effect corresponds to reductions in ground ambient concentrations of 0.05–0.2 μg m−3 for sulfate, 3–6 μg m−3 for total nitrate, and 1–3 μg m−3 for total ammonium.  相似文献   

8.
This paper reports the results of over 2 years of measurements of several of the species comprising atmospheric SOx (=SO2+SO42−) and NOy (=NO+NO2 + PAN + HNO3+NO3+ organicnitrates + HONO + 2N2O5 …) at Whiteface Mountain, New York. Continuous real-time measurements of SO2 and total gaseous NOy provided data for about 50% and 65% of the period, respectively, and 122 filter pack samples were obtained for HNO3, SO2 and aerosol SO42−, NO3, H+ and NH4+. Concentrations of SO2 and NOy were greatest in winter, whereas concentrations of the reaction products SO42− and HNO3were greatest in summer. The seasonal variation in SO42− was considerably more pronounced than that of HNO3and the high concentrations of SO42− aerosol present in summer were also relatively more acidic than SO42− aerosol in other seasons. As a result, SO42− aerosol was the predominant acidic species present in summer, HNO3was predominant in other seasons. Aerosol NO3 concentrations were low in all seasons and appeared unrelated to simultaneous NOy and HNO3concentrations. These data are consistent with seasonal variations in photochemical oxidation rates and with existing data on seasonal variations in precipitation composition. The results of this study suggest that emission reductions targeted at the summer season might be a cost-effective way to reduce deposition of S species, but would not be similarly cost-effective in reducing deposition of N species. kwAcid deposition, seasonal variation, sulfate, nitrate, nitric acid, sulfur dioxide, oxides of nitrogen, hydrogen peroxide, ozone, air pollution, Adirondack Mountains  相似文献   

9.
Winter rains have lower NO3 levels but higher SO2−4 levels than snows in the NE United States. In this study, four years of winter precipitation data from SE Michigan were examined to help understand these differences. Although NO3 levels were indeed higher in snow than winter rain, the higher concentrations could be attributed to the generally lower precipitation depths associated with snow events than with rain events. The NO3 concentrations are inversely correlated with precipitation depth. There was no evidence that snow scavenged HNO3 in the air more efficiently than rain.Conversely, SO2−4 was far higher in winter rain than in snow. This could not be explained in terms of ground-level ambient S concentrations or the wind direction from which the storm originated. However, the cloud temperatures were high enough in the case of rain to suggest that the cloud hydrometeors could have been present as liquid droplets rather than ice crystals. The SO2−4 concentrations of the precipitation were highly correlated with the temperatures of the cloud layers. The data suggest that SO2 is incorporated and oxidized to SO2−4 in clouds most efficiently when the hydrometeors are present as liquid droplets. The fact that NO3does not show the same relationship suggests that incorporation of N species into cloud water followed by oxidation is not as important a process for N as for S.  相似文献   

10.
This paper illustrates a simple technique of performing space–time analysis of precipitation-weighted SO42− concentration data across the eastern US that were collected by the National atmospheric deposition program. Using a moving average filter and two-dimensional spatial data filtering algorithm on the time series of precipitation-weighted SO42− concentrations, we show that decreases of about 50% have occurred in SO42− concentrations in Minnesota, Wisconsin, and over the northeastern US between 1985 and 1998, generally consistent with SO2 emissions’ reductions over this period. The decreases in SO42− concentrations tended to be smaller in the midwest and south.  相似文献   

11.
To improve our understanding of the mechanisms of particulate sulfur formation (non sea-salt sulfate, nss-SO42−) and methanesulfonate (MSx used here to represent the sum of gaseous methanesulfonic acid, MSA, and particulate methanesulfonate, MS) in the eastern Mediterranean and to evaluate the relative contribution of biogenic and anthropogenic sources to the S budget, a chemical box model coupled offline with an aerosol–cloud model has been used.Based on the measurements of gaseous dimethyl sulfide (DMS) and methanesulfonic acid (MSA) and the MSA sticking coefficient determined during the Mediterranean Intensive Oxidant Study (MINOS) experiment, the yield of gaseous MSA from the OH-initiated oxidation of DMS was calculated to be about 0.3%. Consequently, MSA production from gas-phase oxidation of DMS is too small to explain the observed levels of MS. On the other hand, heterogeneous reactions of dimethyl sulfoxide (DMSO) and its gas-phase oxidation product methanesulfinic acid (MSIA) can account for most of the observed MS levels. The modelling results indicate that about 80% of the production of MS can be attributed to heterogeneous reactions.Observed submicron nss-SO42− levels can be fully explained by homogeneous (photochemical) gas-phase oxidation of sulfur dioxide (SO2) to sulfuric acid (H2SO4), which is subsequently scavenged by (mainly submicron) aerosol particles. The predominant oxidant during daytime is hydroxyl radical (OH) showing very high peak levels in the area during summer mostly under cloudless conditions. Therefore, during summer in the east Mediterranean, heterogeneous sulfate production appears to be negligible. This result is of particular interest for sulfur abatement strategy. On the other hand only about 10% of the supermicron nss-SO42− can be explained by condensation of gas-phase H2SO4, the rest must be formed via heterogeneous pathways.Marine biogenic sulfur emissions contribute up to 20% to the total oxidized sulfur production (SO2 and H2SO4) in good agreement with earlier estimates for the area.  相似文献   

12.
The chemical composition of pollutant species in precipitation sampled daily or weekly at 10 sites in Ireland for the five-year period, 1994–1998, is presented. Sea salts accounted for 81% of the total ionic concentration. Approximately 50% of the SO42− in precipitation was from sea-salt sources. The proportion of sea salts in precipitation decreased sharply eastwards. In contrast, the concentration of NO3 and the proportion of non-sea-salt SO42− increased eastwards reflecting the closer proximity to major emission sources. The mean (molc) ratio of SO42−:NO3 was 1.6 for all sites, indicating that SO42− was the major acid anion.The spatial correlation between SO42−, NO3 and NH4+ concentrations in precipitation was statistically significant. The regional trend in NO3 concentration was best described by linear regression against easting. SO42− concentration followed a similar pattern. However, the regression was improved by inclusion of elevation. Inclusion of northing in the regression did not significantly improve any of the relationships except for NH4+, indicating a significant increase in concentrations from northwest to southeast.The spatial distribution of deposition fluxes showed similar gradients increasing from west and southwest to east and northeast. However, the pattern of deposition shows the influence of precipitation volume in determining the overall input. Mean depositions of sulphur and nitrogen in precipitation were ≈30 ktonnes S yr−1 and 48 ktonnes N yr−1 over the five-year period, 1994–1998, for Ireland.Least-squares linear regression analysis indicated a slight decreasing trend in precipitation concentrations for SO42− (20%), NO3 (13%) and H+ (24%) and a slight increasing trend for NH4+ (15%), over the period 1991–1998.  相似文献   

13.
The influence of dissolved NO2 and iron on the oxidation rate of S(IV) species in the presence of dissolved oxygen is presented. To match the conditions in the real environment, the concentration of iron in the reaction solution and trace gases in the gas mixture was typical for a polluted atmosphere. The time dependence of HSO3, SO42−, NO2 and NO3 and the concentration ratio between Fe(II) and total dissolved iron were monitored. Sulphate formation was the most intensive in the presence of an SO2/NO2/air gas mixture and Fe(III) in solution. The highest contribution to the overall oxidation was from Fe-catalysed S(IV) autoxidation. The reaction rate in the presence of both components was equal to the sum of the reaction rates when NO2 and Fe(III) were present separately, indicating that under selected experimental conditions there exist two systems: SO2/NO2/air and SO2/NO2/air/Fe(III), which are unlikely to interact with each other. The radical chain mechanism can be initiated via reactions Fe(III)–HSO3 and NO2–SO32−/HSO3.  相似文献   

14.
The effects of the burning of fireworks on air quality in Beijing was firstly assessed from the ambient concentrations of various air pollutants (SO2, NO2, PM2.5, PM10 and chemical components in the particles) during the lantern festival in 2006. Eighteen ions, 20 elements, and black carbon were measured in PM2.5 and PM10, and the levels of organic carbon could be well estimated from the concentrations of dicarboxylic acids. Primary components of Ba, K, Sr, Cl, Pb, Mg and secondary components of C5H6O42−, C3H2O42−, C2O42−, C4H4O42−, SO42−, NO3 were over five times higher in the lantern days than in the normal days. The firework particles were acidic and of inorganic matter mostly with less amounts of secondary components. Primary aerosols from the burning of fireworks were mainly in the fine mode, while secondary formation of acidic anions mainly took place on the coarse particles. Nitrate was mainly formed through homogeneous gas-phase reactions of NO2, while sulfate was largely from heterogeneous catalytic transformations of SO2. Fe could catalyze the formation of nitrate through the reaction of α-Fe2O3 with HNO3, while in the formation of sulfate, Fe is not only the catalyst, but also the oxidant. A simple method using the concentration of potassium and a modified method using the ratio of Mg/Al have been developed to quantify the source contribution of fireworks. It was found that over 90% of the total mineral aerosol and 98% of Pb, 43% of total carbon, 28% of Zn, 8% of NO3, and 3% of SO42− in PM2.5 were from the emissions of fireworks on the lantern night.  相似文献   

15.
The influence of soluble compounds leached from real atmospheric aerosol particles (size range Dae: 0.17–1.6 μm) and dissolved NO2 on S(IV) oxidation in aqueous solution is presented. Experiments were conducted with aerosol particles of two different origins (i.e., urban and industrial) and at concentrations of trace gases in the gas mixtures (SO2/air and SO2/NO2/air) typical for a polluted atmosphere. During the introduction of SO2/air into the aqueous aerosol suspensions under dark conditions at pH 4, the formation of SO42− was very slow with a long induction period. However, in the presence of NO2 the oxidation rate of dissolved SO2 in suspensions of aerosols from both origins increased substantially (about 10 times). The results suggest that soluble compounds eluted from atmospheric aerosols have not only a catalytic (e.g. Fe, Mn), but also a pronounced inhibiting effect (e.g., oxalate, formate, acetate, glycolate) on S(IV) autoxidation. When NO2 was also introduced into the aerosol suspensions, the inhibition was not so highly expressed. An explanation for this is that the radical chain mechanism is mainly initiated by the interaction of dissolved NO2 and HSO3. Therefore, at conditions typical for a polluted atmosphere dissolved NO2 can have a significant influence on the secondary formation of SO42−.  相似文献   

16.
Arctic air chemistry observations made in Canada between 1979 and 1984 are discussed. The weekly average concentration of 25 aerosol constituents has been measured routinely at three locations. Anthropogenic pollution typified by SO42− and V has a persistent seasonal cycle. SO42− concentrations are similar at all three locations, although they tend to be somewhat higher at Alert than at Mould Bay and Igloolik. The seasonal variation of an aerosol constituent depends on its source. There are four distinctive seasonal variations for:
  • 1.(i) anthropogenic constituents Cr, Cu, Mn, Ni, Pb, Sr, V, Zn, H+, NH4+, SO42−, NO3,
  • 2.(ii) halogens (excepting Cl) Br, I, F,
  • 3.(iii) sea salt elements Na, Mg, Cl and
  • 4.(iv) soil constituents Al, Ba, Ca, Fe and Ti. In the Arctic winter, the mean concentrations of anthropogenic aerosol constituents, except SO42−, are 2–4 times lower than annual mean concentrations in southern Sweden near a major source region. SO42− concentrations are only 30% lower mainly because of production from SO2. Light scattering (bscat) and SO42− observations indicate that the SO42− fraction of the fine particle mass fluctuates between 3 and 65% during the polluted winter months. Daily mean bsact, at Mould Bay that exceeds 50 × 10−6m−1 is associated with air originating from the northwest. The soluble major ion composition of aerosols during winter varies markedly with particle size. H+, NH4+ and SO42− dominate submicrometre particles while sea-salt ions Mg2+, Na+ and Cl predominate in supermicrometre particles. Winter SO2 concentrations at Mould Bay and Igloolik ranged from 0.2 to 1.5 ppb
  • 5.(v). The fraction of airborne S as SO2 ranged from 20 to 90% and peaked in late December-early January. The concentration of total NO3 (0.025–0.090 ppb(v)) is much lower than that of SO42− (0.3–1.2 ppb (v)).
  相似文献   

17.
Measurements have been made of sulfur and nitrogen compounds in precipitation since 1980 and in air since 1981 in Ontario. This paper presents results of the atmospheric deposition measurement program to the end of 1985. As is to be expected from the distribution of emission sources, annual concentrations of SO42− andNO3 in precipitation, and of SO2,SO42− andNO3 in air are higher in southern Ontario than in northern Ontario. The corresponding distribution pattern for deposition is similar to that of concentration. A wet SO42− deposition rate of 20 kg ha1− y1−, a value considered critical for the acidification of sensitive water bodies, is exceeded in all of central and southern Ontario. On a province-wide basis, sulfur wet deposition is about four times higher than sulfur dry deposition. For nitrogen, wet and dry deposition are more comparable, though the former is still higher. The S- and N-species display different seasonal trends in concentration and deposition reflecting a dependence on meteorological factors, and on the associated chemical transformation rates. On the other hand, year to year variations are small.  相似文献   

18.
Seasonal variations in atmospheric aerosol concentration and composition have been determined at two nearby sites, one urban and one rural, near Leeds, W. Yorkshire. Aerosols, sampled on a daily basis and collected in the size ranges < 2.5 μm and 2.5−15 μm, were analysed for total mass, SO2−4, NO3, Cl and NH+4. Dark smoke and SO2 were also measured at both sites. Results are given covering the period October 1982–September 1983. The average concentration of particles was higher at the urban site. The urban-rural difference in coarse particle concentration, which was about a factor of 2, was more significant than the difference in the fine particle concentration, which was only 1.3. Smoke and SO2 concentrations showed strong wintertime maxima and summertime minima. Fine NO3 and Cl concentrations also had pronounced wintertime maxima and summertime minima attributed to the variation in volatility of their ammonium salts. Total mass, SO2−4 and NH+4 did not show any clear seasonal variations. Anti-cyclonic conditions in summer resulted in elevated mass concentrations of secondary pollutants, e.g. SO2−4. The fine fraction contained ca 50% water-soluble inorganic ions at Leeds and slightly more at the rural site. These proportions showed little seasonal variation.  相似文献   

19.
Numerical simulations have been carried out with a model consisting of clear-air chemistry, in- cloud chemical reactions, and dynamic processes of cloud development in order to examine the time history of cloudwater pH and sulfate production in a cumulus cloud and the relationship between pollutant precursors and corresponding acidic chemical species in wet deposition. Preliminary results indicate that the molar ratio SO42−/NC3 in cloud water increases as the ratio SO2/NO2 increases, that the relationship between the increase of precursor SO2/NO2 and the increase of SO42−/NO3 in cloud water is nonlinear, and that the degree of this nonlinearity becomes more significant for cases when the cloud condensation nuclei content in air is assumed to be invariant.  相似文献   

20.
Wet and dry deposition as collected by a bucket were measured at two sites in southeastern Michigan for two years. The precipitation had an average pH of 4.27 and a SO2−4 to NO3 ratio of 2.0. Particulate dry deposition velocities of 0.6 cm s−1 for SO2−4 and NO3 and > 2 cm s−1 for Cl, Ca2+, Mg2+,Na+ and K+ were calculated. The ambient particle composition, dry bucket collection and wet deposition were compared at two sites, one urban and the other rural. Higher ambient particle concentrations and dry deposition rates were measured at the urban site than the rural site, indicating the influence of local emissions. However, local emissions had no effect on the wet deposition concentrations. The influence of more distant source regions was examined by separating the precipitation events by wind direction. The events from the south and east had the highest SO2−4 to NO3 ratios, which corresponded to the areas with the highest sulfur emissions. NO3 showed no directional dependence.Wet deposition was examined for the effect of storm type and seasonal trends. Contrary to a recent study on Long Island, we found higher concentrations of H+, SO2−4 and NH+4 in winter rain compared to snow. The wet deposition concentrations of H+, SO2−4, and NH+4 were highest in the summer, while only Na+ and Cl concentrations were highest in the winter, presumably due to winter road salting. The total deposition of acidic ions was highest in the summer and lowest in the winter, due both to lower concentrations and lower precipitation volumes in the winter. The dry deposition as collected by a bucket accounted for 1 % of total H+ deposition, 21 % of SO2−4 deposition, 27% of NO3 deposition, 50% of Cl deposition and 61 % of Ca2+ deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号