首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM2.5, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA. Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components. For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2.5 mass always exceeded the proposed annual average standard (12-month average = 20.3 +/- 9.5 micrograms/m3). The particulate SO4(2-) fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particulate NO3- collected on a denuded nylon filter averaged 1.1 +/- 0.9 micrograms/m3. Particle-phase organic compounds (as organic carbon x 1.4) measured on a denuded quartz filter sampler averaged 6.4 +/- 3.1 micrograms/m3 (32% of FRM PM2.5 mass) with less seasonal variability than SO4(2-).  相似文献   

2.
Measurements of light scattering and the chemical composition of the fine aerosol from the Portland (Oregon) Aerosol Characterization Study (PACS) of 1977–1978 are reported. Scattering coefficients for sulfate, nitrate, carbonaceous aerosol and residual mass were determined by stepwise multiple linear regression. Unlike other cities the scattering efficiencies for sulfate, nitrate and carbonaceous aerosol were approximately the same. Carbonaceous aerosol was found to account for about 50% of both the fine aerosol mass and the light scattering.  相似文献   

3.
Aerosol light scattering measurements as a function of relative humidity   总被引:1,自引:0,他引:1  
The hygroscopic nature of atmospheric fine aerosol was investigated at a rural site in the Great Smoky Mountains National Park during July and August 1995. Passing the sample aerosol through an inlet, which housed an array of Perma Pure diffusion dryers, controlled the sample aerosol's relative humidity (RH). After conditioning the aerosol sample in the inlet, the light scattering coefficient and the aerosol size distribution were simultaneously measured. During this study, the conditioned aerosol's humidity ranged between 5% < RH < 95%. Aerosol response curves were produced using the ratio bspw/bspd; where bspw is the scattering coefficient measured at some RH greater than 20% and bspd is the scattering coefficient of the "dry" aerosol. For this work, any sample RH values below 15% were considered dry. Results of this investigation showed that the light scattering ratio increased continuously and smoothly over the entire range of relative humidity. The magnitude of the ratio at a particular RH value, however, varied considerably in time, particularly for RH values greater than approximately 60%. Curves of the scattering coefficient ratios as a function of RH were generated for each day and compared to the average 12-hour chemical composition of the aerosol. This comparison showed that for any particular RH value the ratio was highest during time periods of high sulfate concentrations and lowest during time periods of high soil or high organic carbon concentrations.  相似文献   

4.
A photoacoustic spectrometer has been developed to measure in situ light absorption by aerosol. The measured quantity is the sound pressure produced in an acoustic resonator caused by light absorption. The current lower detection limit for light absorption is 0.4 Mm-1 which corresponds to an elemental carbon mass density of ≈40 ng m-3 assuming an efficiency for light absorption of 10 m2 g-1. Calibration is performed using simple theory for the instrument along with use of a calibrated microphone and laser. The acoustic resonator is operated in the plane wave mode, which has a quality factor of ≈80, a resonance frequency of ≈500 Hz, and a photoacoustic coefficient of 12.8 Pa (W m-1)-1. The equivalent noise bandwidth of the resonator is ≈5 Hz. Coherent acoustic noise was supressed through the use of acoustic notch filters and laser beam ports at pressure nodes of the resonator. The relatively low-quality factor made it possible to use phase-sensitive detection having an equivalent noise bandwidth of ≈7.5 mHz. This was achieved by vector time averaging the microphone signal for ≈8 min. Two compact, efficient lasers were used during instrument evaluation performed in the Northern Front Range Air Quality Study (Colorado, 1996/97). One was a laser diode pumped, frequency doubled, solid state laser, and the other was a laser diode. Laser wavelengths were 532 nm and 685 nm, and corresponding average powers were 60 and 87 nW. Some examples are provided for light absorption measurements using the photoacoustic instrument and a nearby aethalometer.  相似文献   

5.
The European critical levels (CLs) to protect vegetation are expressed as an accumulative exposure over a threshold of 40 ppb (nl l(-1)). In view of the fact that these chamber-derived CLs are based on ozone (O(3)) concentrations at the top of the canopy the correct application to ambient conditions presupposes the application of Soil-Vegetation-Atmosphere-Transfer (SVAT) models for quantifying trace gas exchange between phytosphere and atmosphere. Especially in the context of establishing control strategies based on flux-oriented dose-response relationships, O(3) flux measurements and O(3) exchange simulations are needed for representative ecosystems. During the last decades several micrometeorological methods for quantifying energy and trace gas exchange were developed, as well as models for the simulation of the exchange of trace gases between phytosphere and atmosphere near the ground. This paper is a synthesis of observational and modeling techniques which discusses measurement methods, assumptions, and limitations and current modeling approaches. Because stomatal resistance for trace gas exchange is parameterized as a function of water vapor or carbon dioxide (CO(2)) exchange, the most important micrometeorological techniques especially for quantifying O(3), water vapor and CO(2) flux densities are discussed. A comparison of simulated and measured O(3) flux densities shows good agreement in the mean.  相似文献   

6.
Ojala S  Lassi U  Keiski RL 《Chemosphere》2006,62(1):113-120
Availability of reliable emission measurements of concentrated volatile organic compounds (VOCs) bear great significance in facilitating the selection of a feasible emission abatement technique. There are numerous methods, which can be used to measure VOC emissions, however, there is no single method that would allow sampling of the whole range of volatile organics. In addition, research efforts are usually directed to the development of measuring VOCs in diluted concentrations. Therefore, there is a need for a novel measurement method, which can give reliable results while entailing simple operations and low costs. This paper represents a development effort of finding a reliable measurement procedure. A methodology is proposed and used to measure solvent emissions from coating processes.  相似文献   

7.
8.
A study was conducted to evaluate five techniques for determining ambient formaldehyde concentrations. One technique used a spectroscopic determination, and the other four techniques used derivatization followed by fluorometric analysis or high-performance liquid chromatography with detection by u.v. absorption. Formaldehyde was generated by two techniques. In the first technique, zero air was bubbled through a solution of aqueous formaldehyde to produce gas-phase formaldehyde. Various compounds serving as possible interferences were added singly or in combination to these air mixtures. In the second technique, formaldehyde was generated as a product from controlled irradiations of hydrocarbons and nitrogen oxides in a smog chamber operated in a dynamic mode. The study was conducted as a blind intercomparison with no knowledge by the participants of the HCHO concentrations or the interferences added.The data from each of the techniques were compared against mean values in each sampling period. For formaldehyde in zero air, average deviations for each of the techniques ranged between 15 and 30%. At a formaldehyde concentration of 10 ppb, each technique showed no evidence for interferences by O3 (190 ppbv), NO2 (300 ppbv), SO2 (20 ppbv), and H2O2 (7 ppbv). The agreement for formaldehyde concentrations measured for the photochemical mixtures was similar to that of the mixtures in zero air.Ambient measurements were also performed on three evenings and for one 36-h period. Ambient formaldehyde concentrations ranged from 1 to 10 ppbv. Ambient H2O2 measurements were also performed. A strong correlation in the diurnal concentration profile for formaldehyde and H2O2 was observed over the 36-h period.  相似文献   

9.
The water uptake by fine aerosol particles in the atmosphere has been investigated at three rural National Parks in the United States (Great Smoky Mountains, Grand Canyon and Big Bend National Parks). The relative humidity (RH) of sample aerosols was varied from less than 20% to greater than 90% using Perma Pure drying tubes as the scattering coefficient of the aerosol was measured with a Radiance Research M903 nephelometer. Data from these studies show that growth curves at all the three sites are similar in shape but the magnitude of growth can vary considerably from day to day. The growth curves from Great Smoky Mountains show smooth continuous growth over the entire range of RH, while the growth curves from the Grand Canyon and Big Bend show smooth and continuous growth on some days and deliquescence on other days. Comparing 12-h filter samples of chemical composition data with the aerosol growth curves, we find that higher fractions of soluble inorganic compounds (sulfate and nitrate) produce growth curves of greater magnitude than do higher concentrations of either organic carbon or soil material.  相似文献   

10.
《Atmospheric environment(England)》1981,15(10-11):2091-2096
Measuring the fly ash light absorption for coal-fired boilers with the Integrating Plate Method (IPM) is discussed. It is observed that measurement of the optical properties of fly ash may also be useful for comparison with ambient aerosols to identify the relative contribution of primary particulates to downwind visibility. The IPM technique is defined as comparing the light absorption through a clean nuclepore filter to one with a single layer of aerosol by integrating the scattered light so only absorption is measured. Since the light absorption is a strong function of particle size, careful sizing is required for accurate measurement. Preliminary calibration and fly ash data are reported.  相似文献   

11.
Size-segregated aerosol samples were taken during 2 winter pollution periods and in clean summer air at different remote locations in the European Arctic > 74°N. By means of a newly developed integrating sphere photometer these filter samples have been analysed for aerosol light absorption coefficients and particulate elemental carbon (PEC). The relatively high PEC concentrations in winter confirm other findings about the Arctic winter atmosphere having an aged continental aerosol burden. In summer very low light absorption coefficients of 4.5 × 10−8 m−1 were measured, similar to upper tropospheric background values. For the climatically important months of March-May the key optical aerosol properties (extinction coefficient, single scattering albedo and absorption to backscatter ratio) were determined. Based on the approach of J.M. Mitchell (1971, in Man's Impact on Climate. MIT Press, Cambridge, MA) the Arctic haze aerosol is found to contribute to atmospheric heating, even in the summer. A first PEC size distribution was determined in a clean polar summer air. The results show systematic variations in the PEC size distribution from urban to remote locations and seasonal variations in the sink region which may be exploited to quantify aerosol removal process in long distance transport studies.  相似文献   

12.
ABSTRACT

Three-dimensional air quality models (AQMs) represent the most powerful tool to follow the dynamics of air pollutants at urban and regional scales. Current AQMs can account for the complex interactions between gas-phase chemistry, aerosol growth, cloud and scavenging processes, and transport. However, errors in model applications still exist due in part to limitations in the models themselves and in part to uncertainties in model inputs. Four-dimensional data assimilation (FDDA) can be used as a top-down tool to validate several of the model inputs, including emissions inventories, based on ambient measurements. Previously, this FDDA technique was used to estimate adjustments in the strength and composition of emissions of gas-phase primary species and O3 precursors.

In this paper, we present an extension to the FDDA technique to incorporate the analysis of particulate matter (PM) and its precursors. The FDDA approach consists of an iterative optimization procedure in which an AQM is coupled to an inverse model, and adjusting the emissions minimizes the difference between ambient measurements  相似文献   

13.
双波长紫外吸收法有机废水COD测量技术与仪器设计   总被引:1,自引:0,他引:1  
紫外吸收法直接测定有机废水COD是一种无需化学试剂、无样品前处理、无二次污染的绿色无损检测技术,但在实际应用中发现,有机废水中的悬浮物对测量结果产生较大影响.以实际废水水样为例,详细阐述了双波长紫外吸收法测量有机废水COD的操作方法及其消除悬浮物干扰的原理,并介绍了运用该技术设计开发的COD在线测量仪器.该仪器采用嵌入式计算机系统实时采集和处理数据,根据实际废水在双波长测量条件下的有效紫外吸光度快速推算出其COD值,具有快速、准确、无污染的特点.  相似文献   

14.
ABSTRACT

Aerosol size distributions were measured during the summertime 1995 Southeastern Aerosol and Visibility Study (SEAVS) in Great Smoky Mountains National Park using an Active Scattering Aerosol Spectrometer (ASASP-X) optical particle counter. We present an overview of the experimental method, our data inversion technique, timelines of the size distribution parameters, and calculations of dry accumulation mode aerosol density and refractive index. Aerosol size distributions were recorded during daylight hours for aerosol in the size range 0.1 < Dp < 2.5 u,m. The particle refractive index used for the data inversion was calculated with the partial molar refractive index approach using 12-hr measured aerosol chemical composition. Aerosol accumulation mode volume concentrations ranging from 1 to 26 u,m3 cm-3 were observed, with an average of 7 ± 5 u,m3 cm-3. The study average dry accumulation mode geometric volume median diameter was 0.27 ± 0.03 u,m, and the mean geometric standard deviation was 1.45 ± 0.06. Using an internally mixed aerosol model, and assuming chemical homogeneity across the measured particle distribution, an average accumulation mode dry sulfate ion mass scattering efficiency of 3.8 ± 0.6 m2 g-1 was calculated.  相似文献   

15.
ABSTRACT

The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM25, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA.

Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components.

For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2 5 mass always exceeded the proposed annual average standard (12-month average = 20.3 ± 9.5 ug/m3). The particulate SO4 2- fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particu-late NO3 - collected on a denuded nylon filter averaged 1.1 ± 0.9 ug/m3. Particle-phase organic compounds (as organic carbon × 1.4) measured on a denuded quartz filter sampler averaged 6.4 ± 3.1 ug/m3 (32% of FRM PM2 5 mass) with less seasonal variability than SO4 2-.  相似文献   

16.
The recently completed Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study focused on particulate sulfate source attribution for a 4-month period from July through October 1999. A companion paper in this issue by Schichtel et al. describes the methods evaluation and results reconciliation of the BRAVO Study sulfate attribution approaches. This paper summarizes the BRAVO Study extinction budget assessment and interprets the attribution results in the context of annual and multiyear causes of haze by drawing on long-term aerosol monitoring data and regional transport climatology, as well as results from other investigations. Particulate sulfates, organic carbon, and coarse mass are responsible for most of the haze at Big Bend National Park, whereas fine particles composed of light-absorbing carbon, fine soils, and nitrates are relatively minor contributors. Spring and late summer through fall are the two periods of high-haze levels at Big Bend. Particulate sulfate and carbonaceous compounds contribute in a similar magnitude to the spring haze period, whereas sulfates are the primary cause of haze during the late summer and fall period. Atmospheric transport patterns to Big Bend vary throughout the year, resulting in a seasonal cycle of different upwind source regions contributing to its haze levels. Important sources and source regions for haze at Big Bend include biomass smoke from Mexico and Central America in the spring and African dust during the summer. Sources of sulfur dioxide (SO2) emissions in Mexico, Texas, and in the Eastern United States all contribute to Big Bend haze in varying amounts over different times of the year, with a higher contribution from Mexican sources in the spring and early summer, and a higher contribution from U.S. sources during late summer and fall. Some multiple-day haze episodes result from the influence of several source regions, whereas others are primarily because of emissions from a single source region.  相似文献   

17.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

18.
19.
The state of mixture of light-absorbing carbonaceous particles was investigated in relation to light absorption properties using electron microscopic examinations, black carbon (BC) analyses of quartz filter by thermal/optical reflectance (TOR) method, measurements with two continuous light-absorbing photometers at a suburban site of Tsukuba, about 60 km northeast of Tokyo. The volume fraction of water-soluble material (?) in individual particles is important for assessing particulate light-absorbing and/or scattering of atmospheric aerosols. The values of ? in BC particles were evaluated by electron micrographs before and after dialysis (extraction) of water-soluble material. The mass absorption coefficient (MAC in units of m2 g?1) tended to increase with increasing the average ? in BC particles with the radius range of 0.05–0.5 μm. Thus, our results indicate that coatings of water-soluble material around BC particles can enhance the absorption of solar radiation. Moreover, the single scattering albedo (SSA) will increase because a large amount of coating material will scatter more light.  相似文献   

20.
ABSTRACT

Wintertime atmospheric light scattering in Dallas, TX, was estimated through the use of aerosol models. Input data for the aerosol models were provided by measurements of aerosol chemistry, physical particle size distributions, and distributions of particulate sulfur by particle size, and by predictions by an atmospheric simulation model. Light scattering measurements provided a basis for testing the aerosol models. The SCAPE thermodynamic equilibrium model was used to estimate the amount of liquid water associated with particles and the ELSIE Mie scattering model was applied to estimate the resulting light scattering. The calculations were based on aerosol properties measured in Dallas during December 1994 and February 1995, and changes in scattering due to hypothetical changes in the aerosol were predicted. The predicted light scattering was compared to scattering measured by an Optec nephelom-eter; agreement was within 20% in every case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号