首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are inadequate measurements of surface ambient concentrations of mercury species and their deposition rates for the UK deposition budget to be characterized. In order to estimate the overall mercury flux budget for the UK, a simple long-term 1D Lagrangian trajectory model was constructed that treats emissions (1998), atmospheric transformation and deposition across Europe. The model was used to simulate surface concentrations of mercury and deposition across Europe at a resolution of 50 km×50 km and across the UK at 20 km×20 km. The model appeared to perform adequately when compared with the few available measurements, reproducing mean concentrations of elemental gaseous mercury at particular locations and the magnitude of regional gradients. The model showed that 68% of the UK's mercury emissions are exported and 32% deposited within the UK. Of deposition to the UK, 25% originates from the Northern Hemisphere/global background, 41% from UK sources and 33% from other European countries. The total mercury deposition to the UK is in good agreement with other modelling, 9.9 tonne yr−1 cf. 9.0 tonne yr−1, for 1998. However, the attribution differs greatly from the results of other coarser-scale modelling, which allocates 55% of the deposition to the UK from UK sources, 4% from other European countries and 60% from the global background atmosphere. The model was found to be sensitive to the speciation of emissions and the dry deposition velocity of elemental gaseous mercury. The uncertainties and deficiencies are discussed in terms of model parameterization and input data, and measurement data with which models can be validated. There is an urgent requirement for measurements of removal terms, concentrations, and deposition with which models can be parameterized and validated.  相似文献   

2.

The water fluxes through the mountainous forest ecosystem ‘Mühleggerköpfl’ were simulated by means of the mechanistic soil physical model Hydrus ID. The objective was to set up a nitrogen budget in order to decide if the ecosystem accumulates nitrogen or if nitrogen leaks from the site. The simulated annual loss of N by percolation ranges between 0.4 and 1 g N m−2 yr and is smaller than the annual input by bulk and occult deposition, which combines to approx 1.2–1.5 g N m yr. Obviously the forest soil presently accumulates N. With an N input-rate exceeding the N output, the operationally defined status of N saturation is not yet reached. Comparing the magnitude of the N pool in the soil (several kg N m−2) with the rate of the annual increase (a few g N m−2yr−1), the process of N saturation is apparently slow.

  相似文献   

3.
An assessment was made of the capacity of base cations to neutralize acid deposition and of the contribution of base cation deposition to forest nutrition in Europe. In large parts of southern Europe more than 50% of the potential acid deposition was found counteracted by deposition of non-sea salt Mg2+ + Ca2+ + K+. In central and northwestern Europe, base cation deposition usually amounted to less than 25% of the acid input. Smallest base cation deposition relative to potential acid deposition was found in southern Scandinavia, Denmark, northern Germany and The Netherlands. A similar spatial pattern was found for the neutralization of acid anions in precipitation. Whereas in Scandinavia weathering is the dominant supplier of base cation to forest soils, in eastern and southern Europe, forests mainly rely on atmospheric deposition for the supply of base cations. Using error propagation, the random and systematic error in acid neutralization capacity for an average grid cell of 10 × 20 km was estimated to equal 45–55% and 50–55%, respectively.  相似文献   

4.
The contribution of dry deposition to the total atmospheric input of acidifying compounds and base cations is of overwhelming importance. Throughfall measurements provide an estimate of the total deposition to forest soils, including dry deposition, but some uncertainties, related to the canopy interaction processes, affect this approach. We compared the concentrations and the fluxes of the main ions determined in wet-only, bulk and throughfall samples collected at five forest sites in Italy. The contribution of coarse particles deposited onto the bulk samplers was of prime importance for base cations, representing on average from 16% to 46% of the bulk deposition. The extent of this dry deposition depended on some geographical features of the sites, such as the distance from the sea and the annual rainfall. The possibility of applying specific bulk/wet ratios to estimate the wet deposition proved to be limited by the temporal variability of these ratios, which must be considered together with the spatial variability. A direct comparison of the dry contribution deriving from the bulk–wet and the throughfall–wet demonstrated that an extensive natural surface (forest canopy) performs better than a small synthetic surface (funnel of the bulk sampler) in collecting dry deposition of SO42−, NO3 and Na+. The canopy exchange model was applied to both bulk and wet data to estimate the contribution of dry deposition to the total input of base cations, and the uncertainty associated to the model discussed. The exclusive use of bulk data led to a considerable underestimation of base cation dry deposition, which varies among the study sites.  相似文献   

5.
Deposition of base cations (Na+, Mg2+, Ca2+, K+) in Europe was mapped for 1989 with a spatial resolution of 10 x 20 km using the so-called inferential modeling technique. Deposition fields resembled the geographic variability of sources, land-use and climate. Dry deposition constituted on average 45% of the total base cation deposition in Europe. Modeled deposition estimates compared reasonably well with deposition estimates derived from throughfall and bulk-precipitation measurements made at 174 sites scattered over Europe. Using error propagation, the random and systematic error in total deposition for an average grid cell of 10 x 20 km was estimated to equal 35–50% and 25–40%, respectively. Within individual grids a relatively large variability in deposition is expected.  相似文献   

6.
In order to quantify the atmospheric nitrate and sulfate deposition and to investigate factors related to the variability of deposition during 1983 and 1984, precipitation samples from five different meteorological stations in Schleswig-Holstein (Northern Germany) were collected in weekly intervals, using the bulk-sample method. The average element depositions in kg ha−1 a−1 were: 20 for S and 5.5 for N in List (North Sea Island Sylt) and Schleswig, 12 for S and 4.7 for N in Kiel, 16 for S and 4.3 for N in Luebeck and 18 for S and 4.2 for N in Quickborn near Hamburg.N and S concentrations showed a close relationship to the amount of precipitation and the following functions for the estimation of nitrate-N and sulfate-S deposition in Schleswig-Holstein could be derived: (x = precipitation in mm a−1, y = N or S deposition in kg ha−1 a−1) NO3-N: y = 0.003x + 2.29; SO4−S: y = 0.014x + 4.71. According to these relationships most of the element deposition occurred during atmospheric conditions of predominating winds from the west. Especially in the case of S, atmospheric deposition is the only external source of S supply for plants on many agricultural soils. Sometimes the low sulfur input is not sufficient to cover the requirements of agricultural crops in Schleswig-Holstein. Due to the negative S balance in many soils, future increase of S deficiency is expected.  相似文献   

7.
Pine pollen concentrations in air at a semi-remote site in northern Wisconsin attained levels of 18 and 25 μ m−3 in late May and early June of 1979 and 1981, respectively. The upper and lower limits for the deposition velocity of pine pollen at this site are approximately 30 and 1.3 cm s−1, respectively. Consequently, the average annual pine pollen flux at this location for 1979 and 1981 was between 8.0 and 0.35 g m−2. Deposition of total phosphorus and organic C by pollen dispersal are about 5–100% and 11–240%, respectively, of the measured bulk atmospheric loading rate in the region. Pine pollen fluxes of water-extractable K are about 10–230% of the average annual wet deposition, while the fluxes of waterextractable NO3 and SO4−2 by pollen appear to be negligible in comparison to the total atmospheric deposition (wet plus dry deposition) by other particles. The annual pine pollen flux to Crystal Lake, an oligotrophic seepage lake in the region, was estimated to be 6.5 g m−2 during 1981. The deposition of total P by pollen to this lake was 5.8 kg a−1, which is 45 % of the external input of total phosphorus. About 60% of the total P in samples of Pinus strobus and P. resinosa was dissolved reactive P, which is readily available for plant uptake. Because P is the limiting nutrient for many lacustrine systems and pine pollen dispersal coincides with the period of phytoplankton blooms in temperate-region lakes, this episodic input of P may represent an important source for seepage lakes whose external inputs are dominated by atmospheric deposition.  相似文献   

8.
Measurements have been made of sulfur and nitrogen compounds in precipitation since 1980 and in air since 1981 in Ontario. This paper presents results of the atmospheric deposition measurement program to the end of 1985. As is to be expected from the distribution of emission sources, annual concentrations of SO42− andNO3 in precipitation, and of SO2,SO42− andNO3 in air are higher in southern Ontario than in northern Ontario. The corresponding distribution pattern for deposition is similar to that of concentration. A wet SO42− deposition rate of 20 kg ha1− y1−, a value considered critical for the acidification of sensitive water bodies, is exceeded in all of central and southern Ontario. On a province-wide basis, sulfur wet deposition is about four times higher than sulfur dry deposition. For nitrogen, wet and dry deposition are more comparable, though the former is still higher. The S- and N-species display different seasonal trends in concentration and deposition reflecting a dependence on meteorological factors, and on the associated chemical transformation rates. On the other hand, year to year variations are small.  相似文献   

9.
This paper is intended to be used by specialists engaged in air and precipitation quality management on regional and continental scales. Major goals are to establish definition, methodology and specific values of background air and precipitation quality for sulfur (S) and nitrogen (N) species to be used in practical applications of air resources management. Major findings are the following:
  • 1.(a) 69% of SO2 and 63 % of NO2 concentration over Europe originate from continental scale anthropogenic sources,
  • 2.(b) 15% of precipitation sulfate and 11% of precipitation nitrate over Europe are contributed by hemispheric background,
  • 3.(c) hemispheric background pollution values for Europe were found as 1.25 μg (SO2-S)m−3, 0.80 μg (SO42−-S)m−3, 0.157 mg (SO42−-S)l−1 and 0.04 mg (NO3-N)ℓ−1.
  相似文献   

10.
In response to increasing trends in sulfur deposition in Northeast Asia, three countries in the region (China, Japan, and Korea) agreed to devise abatement strategies. The concepts of critical loads and source?Creceptor (S?CR) relationships provide guidance for formulating such strategies. Based on the Long-range Transboundary Air Pollutants in Northeast Asia (LTP) project, this study analyzes sulfur deposition data in order to optimize acidic loads over the three countries. The three groups involved in this study carried out a full year (2002) of sulfur deposition modeling over the geographic region spanning the three countries, using three air quality models: MM5-CMAQ, MM5-RAQM, and RAMS-CADM, employed by Chinese, Japanese, and Korean modeling groups, respectively. Each model employed its own meteorological numerical model and model parameters. Only the emission rates for SO2 and NOx obtained from the LTP project were the common parameter used in the three models. Three models revealed some bias from dry to wet deposition, particularly the latter because of the bias in annual precipitation. This finding points to the need for further sensitivity tests of the wet removal rates in association with underlying cloud?Cprecipitation physics and parameterizations. Despite this bias, the annual total (dry plus wet) sulfur deposition predicted by the models were surprisingly very similar. The ensemble average annual total deposition was 7,203.6?±?370 kt S with a minimal mean fractional error (MFE) of 8.95?±?5.24?% and a pattern correlation (PC) of 0.89?C0.93 between the models. This exercise revealed that despite rather poor error scores in comparison with observations, these consistent total deposition values across the three models, based on LTP group's input data assumptions, suggest a plausible S?CR relationship that can be applied to the next task of designing cost-effective emission abatement strategies.  相似文献   

11.
The paper presents a highly simplified model of the long-range transport and deposition of nitric oxide, nitrogen dioxide, gaseous nitric acid and nitrate aerosol over NW Europe. A ‘constant drizzle’ representation of wet removal of gaseous nitric acid and nitrate aerosol is developed in addition to the representation of dry deposition using appropriate deposition velocities. An analysis of the sensitivity of dry and wet deposition rates of oxidized nitrogen species at a remote, receptor site to the individual model parameters is described. This analysis is extended using latin hypercube sampling to an evaluation of the uncertainties in modelled dry and wet deposition and the contribution played by each model input parameter.  相似文献   

12.
Methane consumption was measured in forest soils of Poland in areas of high regional air pollution (SO2 loads) and compared to the activity in areas of low air pollution loads. The areas include the regions with the highest input of SO2 found in Europe and cover a range of average acid deposition up to a factor of 10. No distinct pattern of methane oxidation activities was identified that could be related to present or previous SO2 loads. Methane consumption activity ranged between 16 and 110 μg CH4 m−2 h−1 similar to the activity encountered in previous studies of forested areas.  相似文献   

13.
To improve our understanding of the mechanisms of particulate sulfur formation (non sea-salt sulfate, nss-SO42−) and methanesulfonate (MSx used here to represent the sum of gaseous methanesulfonic acid, MSA, and particulate methanesulfonate, MS) in the eastern Mediterranean and to evaluate the relative contribution of biogenic and anthropogenic sources to the S budget, a chemical box model coupled offline with an aerosol–cloud model has been used.Based on the measurements of gaseous dimethyl sulfide (DMS) and methanesulfonic acid (MSA) and the MSA sticking coefficient determined during the Mediterranean Intensive Oxidant Study (MINOS) experiment, the yield of gaseous MSA from the OH-initiated oxidation of DMS was calculated to be about 0.3%. Consequently, MSA production from gas-phase oxidation of DMS is too small to explain the observed levels of MS. On the other hand, heterogeneous reactions of dimethyl sulfoxide (DMSO) and its gas-phase oxidation product methanesulfinic acid (MSIA) can account for most of the observed MS levels. The modelling results indicate that about 80% of the production of MS can be attributed to heterogeneous reactions.Observed submicron nss-SO42− levels can be fully explained by homogeneous (photochemical) gas-phase oxidation of sulfur dioxide (SO2) to sulfuric acid (H2SO4), which is subsequently scavenged by (mainly submicron) aerosol particles. The predominant oxidant during daytime is hydroxyl radical (OH) showing very high peak levels in the area during summer mostly under cloudless conditions. Therefore, during summer in the east Mediterranean, heterogeneous sulfate production appears to be negligible. This result is of particular interest for sulfur abatement strategy. On the other hand only about 10% of the supermicron nss-SO42− can be explained by condensation of gas-phase H2SO4, the rest must be formed via heterogeneous pathways.Marine biogenic sulfur emissions contribute up to 20% to the total oxidized sulfur production (SO2 and H2SO4) in good agreement with earlier estimates for the area.  相似文献   

14.
《Chemosphere》2007,66(11):2477-2484
Atmospheric Hg transfer to the forest soil through litterfall was investigated in a primary rainforest at Ilha Grande (Southeast Brazil) from January to December 1997. Litter mass deposition reached 10.0 t ha−1 y−1, with leaves composing 50–84% of the total litter mass. Concentrations of Hg in the total fallen litter varied from 20 to 244 ng g−1, with higher concentrations during the dry season, between June and August (225 ± 17 ng g−1), and lower concentrations during the rainy season (99 ± 54 ng g−1). This seasonal variability was reflected in the Hg flux through litterfall, which corresponded to a Hg input to the forest floor of 122 μg m−2 y−1, with average Hg deposition of 16.5 ± 1.5 μg m−2 month−1 during and just after the dry season (June–September) and 7.0 ± 3.6 μg m−2 month−1 in the rest of the year. The variability in meteorological conditions (determining atmospheric Hg availability to foliar scavenging) may explain the pulsed pattern of Hg deposition, since litterfall temporal variability was generally unrelated with such deposition, except by a peak in litterfall production in September. Comparisons with regional data on Hg atmospheric deposition show that litterfall promotes Hg deposition at Ilha Grande two to three orders of magnitude higher than open rainfall deposition in non-industrialized areas and approximately two times higher than open rainfall deposition in industrialized areas in Rio de Janeiro State. The observed input suggests that atmospheric Hg transfer through litterfall may explain a larger fraction of the total Hg input to forest soils in Southeast Brazil than those recorded at higher latitudes.  相似文献   

15.
A mass balance model was developed to explain the movement of polycyclic aromatic hydrocarbons (PAH) into and out of Siskiwit Lake, which is located on a wilderness island in northern Lake Superior. Because of its location, the PAH found in this lake must have originated exclusively from atmospheric sources. Using gas Chromatographie mass spectrometry, 11 PAH were quantified in rain, snow, air, lake water, sediment core and sediment trap samples. From the dry deposition fluxes, an aerosol deposition velocity of 0.99 ± 0.15 cm s−1 was calculated for indeno[1,2,3-cd]pyrene and benzo[ghi]perylene, two high molecular weight PAH which are not found in the gas phase. The dry aerosol deposition was found to dominate the wet removal mechanism by an average ratio of 9:1. The dry gas flux was negative, indicating that surface volatilization was taking place; it accounted for 10–80 % of the total output flux depending on the volatility of the PAH. The remaining PAH were lost to sedimentation. From the dry gas flux, an overall mass transfer coefficient for PAH was calculated to be 0.18 ± 0.06 m d−1. In this case, the overall mass transfer is dominated by the liquid phase resistance.  相似文献   

16.
The average total (wet plus dry) nitrogen deposition to the Tampa Bay Estuary was 7.3 (±1.3) kg-N ha−1 yr−1 or 760 (±140) metric tons-N yr−1 for August 1996–July 1999, estimated as a direct deposition rate to the 104,000-ha water surface. This nitrogen flux estimate accounted for ammonia exchange at the air–sea interface. The uncertainty estimate was based on measurement error. Wet deposition was 56% of the total nitrogen deposition over this period, with an average 0.78 ratio of dry-to-wet deposition. Wet nitrogen deposition rates varied considerably, from near zero to 1.3 kg-N ha−1 month−1. About 40% of the total nitrogen flux occurred during the summer months of June, July and August when rainfall was the highest, except for 1997–1998 when the El Niño phenomenon brought unseasonal rainfall. Ammonia/ammonium contributed to 58%, and nitric acid/nitrate 42%, of the total nitrogen deposition over the 3-yr period. In one summer as waters of Tampa Bay warmed above 28°C and ammonium concentrations reached 0.03 mg l−1, the estimated net flux of ammonia was from the Bay waters to the atmosphere.  相似文献   

17.
The intent of this paper is to relate the magnitude of the error bounds of data, used as inputs to a Gaussian dispersion model, to the magnitude of the error bounds of the model output, which include the estimates of the maximum concentration and the distance to that maximum. The research specifically addresses the uncertainty in estimating the maximum concentrations from elevated buoyant sources during unstable atmospheric conditions, as these are most often of practical concern in regulatory decision making. A direct and quantitative link between the nature and magnitude of the input uncertainty and modeling results has not been previously investigated extensively. The ability to develop specific error bounds, tailored to the modeling situation, allows more informed application of the model estimates to the air quality issues.In this study, a numerical uncertainty analysis is performed using the Monte-Carlo technique to propagate the uncertainties associated with the model input. Uncertainties were assumed to exist in four model input parameters: (1) wind speed, (2) standard deviation of lateral wind direction fluctuations, (3) standard deviation of vertical wind direction fluctuations, and (4) plume rise. For each simulation, results were summarized characterizing the uncertainty in four features of the ground-level concentration pattern predicted by the model: (1) the magnitude of the maximum concentration, (2) the distance to the maximum concentration, and (3) and (4) the areas enclosed within the isopleths of 50% and 25% of the error-free estimate of maximum concentration.The authors conclude that the error bounds for the estimated maximum concentration and the distance to the maximum can be double that of the error bounds for individual model input parameters. The model output error bounds for the areas enclosed within isopleth values can be triple the error bounds of the input. It was not our intent to cover all possible combinations for the error in the input parameters. Ours was a much more limited goal of providing a lower bound estimate of model uncertainty in which we assume the input is reasonably well characterized and there is no bias in the input. These results allow estimation of minimum bounds on errors in model output when considering reasonable input error bounds.  相似文献   

18.
Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m−3 and 30.7 pg m−3, respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m−2 yr−1. Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m−2 yr−1, respectively.  相似文献   

19.
Gas and aerosol measurements were made during the Polar Sunrise Experiment 2000 at Alert, Nunavut (Canada), using two independent denuder/filter systems for sampling and subsequent analysis by ion chromatography. Twelve to forty-eight hour samples were taken during a winter (9–21 February 2000) and a spring (17 April–5 May 2000) campaign. During the spring campaign, samples were taken at two different heights above the snow surface to investigate concentration differences. Total particulate NO3 is the most abundant inorganic nitrogen compound during Arctic springtime (mean 137.4 ng m−3). The NO3 fluxes were calculated above the snow surface to help identify processes that control snow–atmosphere exchange of reactive nitrogen compounds. We suggest that the observed fluxes of coarse particle NO3 via snow deposition may contribute to the nitrogen inventory in the snow surface. Measurements of surface snow provide experimental data that constrain the contribution of dry deposition of coarse particle NO3 to <7%. Wet deposition in falling snow appears to be the major contributor to the nitrate input to the snow.  相似文献   

20.
In the present work, a box model is applied to estimate the direct climate forcing of aerosol particles for rural air in Central Europe during summertime. In the model, the input parameters reflect regional character: data from satellite observations and other surface measurements are used referring to the selected area, Hungary. In the calculation of direct climate forcing of aerosol particles satellite observations serve as the source of incoming solar radiation intensity data and cloudiness, while different aerosol parameters of the model (mass extinction coefficient, chemical composition, scale height, hygroscopic growth factor, etc.) are based on local measurements. Finally, surface albedo of the area studied was determined on the basis of vegetation cover and precipitation amount. As the summary of our calculations, in Central Europe direct climate forcing of ammonium sulfate is equal to –2.4 W m−2. The climate forcing of total carbon is composed of two terms. The forcings due to scattering and absorption are –1.0 and +0.2 W m−2, respectively. In spite of the fact that the mass concentrations of ammonium sulfate and total carbon are similar, their contribution to the aerosol direct forcing is different. We conclude that ammonium sulfate plays the major role in this process and organics have an additional impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号