首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Air quality problems caused by atmospheric particulate have drawn broad public concern in the global scope. In the paper, the spatiotemporal distributions of fine particle (PM2.5) and inhalable particle (PM10) concentrations estimated with the artificial neural network (ANN) over China during 2006 to 2010 have been discussed. Most high PM10 concentration appears in Xinjiang, Qinghai, Gansu, Ningxia, Hubei, and parts of Inner Mongolia. The distribution of PM2.5 concentration is consistent with China’s three gradient terrains. The seasonal variations of PM2.5 and PM10 concentrations both indicate that they are higher in north China in spring and winter, lowest in summer. In autumn, most provinces in south China appear high value. In particular, high PM2.5 concentration appears in the southeast coastal cities while high PM10 concentration prefers the central regions in south China. On this basis, seasonal Mann–Kendall test method is utilized to analyze the short-term trends. The results also show significant changes of PM2.5 and PM10 concentrations of China in the past 5 years, and most provinces present the tendency of reduction (3–5 μg/m3 for PM2.5 and 10–20 μg/m3 for PM10 per year) while a fraction of provinces appear the increasing trend of 8–16 μg/m3 (PM2.5) and 16–30 μg/m3 (PM10). Simultaneously, PM2.5 population exposure is discussed with the combination of population density-gridded data. Municipalities get much higher exposure level than other provinces. Shanghai suffers the highest population exposure to PM2.5, followed by Beijing and then Tianjin, Jiangsu province. Most provincial capitals, such as Guangzhou, Nanjing, Chengdu, and Wuhan, face much higher exposure level than other regions of their province. Moreover, the PM2.5 exposure situation is more serious in southeast than northwest regions for Beijing-Tianjin-Hebei region. Also, per capita PM2.5 concentration and population-weighted PM2.5 concentration are calculated. The former shows that the high-level regions distribute in Guangdong, Shanghai, and Tianjin, while the latter in Hebei, Chongqing, and Shandong provinces. Further studies may consider optimizing concentration estimation model and use it to discuss the effects of particulate matters on human health.  相似文献   

2.
3.
A uniform analyte response is required for GC–MS analysis in order to obtain acceptable quantitative results. The response of pesticides in complex matrices is susceptible to variation due to the interactions of co-extractives, both with pesticides or with GC–MS system. This study was conducted to determine the magnitude of the interactions, called matrix effect, and their behavior with the matrix dilution. The response of pyrimethanil (4,6-dimethyl-N-phenylpyrimidin-2-amine), cyprodinil (4-cyclopropyl-6-methyl-N-phenylpyrimidin-2-amine), trifloxystrobin (methyl-(2Z)-2-methoxyimino-2-[2-[[(E)-1-[3(trifluoromethyl)phenyl]ethylidene amino]oxymethyl]phenyl]acetate) and bifenthrin(2-methyl-3-phenylphenyl)methyl-3-[(Z)-2-chloro-3,3,3-trifluoroprop-1-enyl]-2,2-dimethylcyclopropane-1-carboxylate), used in apple crops protection, was evaluated in different concentrations of peel and flesh extracts of Granny Smith, Golden Delicious and Demi Rouge, selected as representatives of different matrix types. The matrix effect ranged from ?0.05 to 146.14%, depending on matrix type and pesticide. The highest response variation was observed in extracts of Granny Smith—an enhancement in flesh and suppression in peel extract. With the dilution, the matrix effect decreased with different magnitudes, but for Granny Smith peel extract an inverted effect was observed. The presence of the matrix effect in GC–MS pesticides analysis was obvious, requiring the application of matrix-matched calibration in quantification procedures for each variety, with calibration standards matched by the matrix concentration.  相似文献   

4.
Since we demonstrated the natural formation of chloroform in soil, the question arose to which extent this contributes to the chloroform present in the atmosphere. Concentration gradients in soil air and atmospheric air of different forests were measured. Chloroform concentration gradients indicating emission occur in forest soils and the atmosphere under the canopy, whereas this was not observed for other chlorinated solvents. Above the canopy all concentration gradients observed for chloroform and 1,1,1-trichloroethane indicate deposition. The emission flux was measured using enclosures and calculated from the observed concentration gradients in soil air and atmospheric air. Wood-degrading areas and soils with a humic layer were found to emit up to 1000 ng chloroform m−2 h−1 and seem to be larger chloroform sources than the other areas of study. Rather unexpectedly, some points of one sampling site appeared to emit 1,1,1-trichloroethane, tetrachloromethane and tetrachloroethene. A reasonable agreement was found between the fluxes using enclosures and those derived from the concentration gradients in soil air and atmospheric air.  相似文献   

5.
Many chemical, physiological, and trophic factors are known to affect bioaccumulation of polychlorinated biphenyls (PCBs) in biota. Understanding the primary factors affecting fish contamination is critical for predicting and assessing risks to upper-trophic level consumers, including humans. Here we identify PCB contamination pathways that could explain within- and between-species variability in fish concentration levels. Three freshwater river fish species (barbel, chub and bream) were sampled at three sites along the Rhone River (France) where fish consumption is partially prohibited because of PCB levels exceeding the European health-based benchmark. The trophic position was assessed using an innovative approach based on stable isotope analyses and Bayesian inference, which takes into account both isotope data variability and parameter uncertainty. The effect of foraging habitat on fish contamination was addressed using stable isotope mixing models. The fish trophic position and PCB concentrations were found to be unrelated while the exploitation of sediment detrital carbon as a food source appeared to be a critical factor affecting fish contamination. Fish length, PCB concentration of the sediment, and individual fish foraging habitat (exploitation of detrital versus planktonic carbon sources) explained 80% of within- and between-species variability observed in PCB concentrations. These results, obtained for species that have overlapping TPs and exploit different carbon sources, reveal that the important factor in fish PCB contamination is not only what fish consume, but also and essentially the feeding location.  相似文献   

6.
Recent (<7 years old) cave sediments in Speedwell Cavern, Derbyshire, show an approximately exponential decay of organic carbon with depth. This phenomenon was thought to be due to one of two causes: (i) changing agricultural practice within the catchment feeding the cave, especially the increased use of sewage sludge and animal slurry as fertilizer; (ii) a relatively constant organic carbon concentration over time in the input sediment, with subsequent carbon mineralization during diagenesis. Carbon isotope composition of the organic material and the evolution of H/C ratio with depth indicate that the latter hypothesis is correct and that the profiles result from microbial diagenesis, not increased organic carbon inputs. By comparison with sediment of known (7 years) age, temporal decay constants for organic matter can be derived; these lie between rates previously determined for organic matter decomposition in marine sediments and soils. The H/C ratio of organic matter can be modelled as a function of time and proceeds in a similar fashion to soil organic material.  相似文献   

7.
The study deals with the identification and the determination of the main monoterpenes (α- and β-pinene) released by the pines in the Landes Forest in France. The measurements were taken after preconcentration using TENAX-GC and thermal desorption. The diurnal variation of atmospheric concentration of α- and β-pinene is established; it is less than 0.5 ppbV in the daytime and varies from 2 to 4 ppbV in the night-time. These variations are explained by the fact that the photochemical reactions and the turbulence phenomena to which the terpenes are exposed change quite radically from day to night. The terpene concentration, higher at 5 m than at 25 m, would seem to confirm the existence of a terpene source at ground level.  相似文献   

8.
This work presents the computational fluid dynamic modeling of an exhaust plume dispersed from the exhaust pipe of a class-8 tractor truck powered by 330 hp Cummins M11 electronically controlled diesel engine. This effort utilizes an advanced CFD technique to accurately predict the variation of carbon dioxide concentration inside a turbulent plume using a kε eddy dissipation model. The simulation includes the “real-world” operation of a truck and its exhaust plume in a NASA, Langley aircraft testing wind tunnel, that had an effective volume of 226, 535 m3 (8,000,000 ft3). The predicted results show an excellent agreement with the experimentally measured values of CO2 concentrations, dilution ratios, and the temperature variations inside the plume. A specific goal of this effort was to study the effect of recirculation region near the truck walls on dispersion of the plume. For this purpose, growth of the plume from the center of the exhaust pipe is also presented and discussed. This work also shows the benefits of CFD modeling in applications where dispersion correlations are not required a priori, instead the dispersion coefficients are calculated precisely by solving the turbulent kinetic energy and dissipation equations.  相似文献   

9.
The deposition of atmospheric nitrogen can be enhanced at high altitude sites as a consequence of cloud droplet deposition and orographic enhancement of wet deposition on hills. The degree to which the increased deposition of nitrogen influences foliar nitrogen concentration in a range of upland plant species was studied in a series of field surveys in northern Britain. A range of upland plant species sampled along altitudinal transects at sites of known atmospheric nitrogen deposition showed marked increases in foliar nitrogen concentration with increasing nitrogen deposition and altitude (and hence with decreasing temperature). For Nardus stricta L., Deschampsia flexuosa (L.) Trin., Calluna vulgaris (L.) Hull, Erica cinerea L. and Hylocomium splendens (Hedw.) Br. Eur. on an unpolluted hill, foliar nitrogen increased by 0.07, 0.12, 0.15, 0.08 and 0.04% dry weight respectively for each 1 kg ha(-1) year(-1) increase in nitrogen deposition. Most species showed an approximately linear relationship between foliar nitrogen concentration and altitude but no trend with altitude for foliar phosphorus concentration. This provided evidence that the tissue nutrient status of upland plants reflects nutrient availability rather than the direct effects of climate on growth. However, differences in the relationship between foliar nitrogen concentration and atmospheric nitrogen deposition for N. stricta sampled on hills in contrasting pollution climates show that the possibility of temperature-mediated growth effects on foliar nitrogen concentration should not be ignored. Thus, there is potential to use upland plant species as biomonitors of nitrogen deposition, but the response of different species to nitrogen addition, in combination with climatic effects on growth, must be well characterised.  相似文献   

10.

Introduction  

It has been noticed many times that schools are buildings with high levels of particulate matter concentrations. Several authors documented that concentrations of particulate matter in indoor school microenvironments exceed limits recommended by WHO namely when school buildings are situated near major roads with high traffic densities. In addition, exercise under conditions of high particulate concentrations may increase the adverse health effects, as the total particle deposition increases in proportion to minute ventilation, and the deposition fraction nearly doubles from rest to intense exercise.  相似文献   

11.
Continuous measurements of the CO2 concentration were repeatedly carried out from 1996 to 2007 between Italy and New Zealand by means of a Siemens Ultramat 5E analyzer assembled for shipboard use. Along the ship routes discrete air samples were collected from 1998 to 2005 using four-litre Pyrex flasks. The δ13C of the CO2 from the flask air samples was measured according to well-established techniques. The decadal changes of these two variables can now be evaluated from these results. Large variations of the CO2 concentration were normally recorded in the Mediterranean and the Red Sea. Completely different trends of the CO2 concentration were observed in the Red Sea (30° N to about 13° N) between 2007 (a marked southward decrease) and 2005 and 2003 when a marked southward increase is apparent, at least between 23° and 13° N. A further difference among different expeditions is related to the decrease or increase of the CO2 concentration in the Gulf of Aden. The backward trajectories of the air masses help to explain, at least partially, these differences. In the Indian Ocean and Southern Ocean a decrease of a few ppmv of the CO2 concentration takes place from Cape Guardafui (Northern Somaliland) to southern New Zealand, particularly during 2005 and 2007. The yearly rate of increase of the CO2 concentration between 1996 and 2007 for the Indian Ocean is of about 1.9 ppmv yr?1, in excellent agreement with the NOAA/CMDL measurements carried out during the same period at Mahé Isld. (Indian Ocean) and Cape Grim (Tasmania). The δ13C results obtained from the CO2 of flask samples collected in the Mediterranean show the effect of anthropogenic emissions, though this is considerably smaller than expected. This inconsistency may be related to the large terrestrial biospheric sink of CO2 in the Northern Hemisphere. The results obtained from the Red Sea are quite variable through time and space, particularly in its southern section; their interpretation is not easy. The Indian Ocean and the Southern Ocean show rather homogeneous δ13C results even though a variable carbon isotope shift can be calculated from period/cruise to period/cruise. In the case of the Indian Ocean the mean δ13C value from the flask air samples collected in 2005 is ?8.29‰ and the calculated rate of the carbon isotope shift between 1998 and 2005 is ?0.034‰ yr?1, considerably larger than that calculated at the closest NOAA station (Mahé Isld.) of ?0.026‰ yr?1. This discrepancy may be, at least partially, caused by the small number of measurements carried out at sea. However, the atmosphere over the Indian Ocean is less affected by anthropogenic emissions than in other areas.  相似文献   

12.
FOCUS models are used in the European regulatory risk assessment (RA) to predict individual pesticide concentrations in edge-of-field surface waters. The scenarios used in higher tier FOCUS simulations were mainly based on Central/North European, and work is needed to underpin the validity of simulated exposure profiles for Mediterranean agroecosystems. In addition, the RA of chemicals are traditionally evaluated on the basis of single substances although freshwater life is generally exposed to a multitude of pesticides. In the present study, we monitored 19 pesticides in surface waters of five locations in the Portuguese ‘Lezíria do Tejo’ agricultural area. FOCUS step 3 simulations were performed for the South European scenarios to estimate predicted environmental concentrations (PECs). We verified that 44% of the PECs underestimated the measured environmental concentrations (MEC) of the pesticides, showing a non-compliance with the field data. Risk was assessed by comparing the environmental quality standards (EQS) and regulatory acceptable concentrations with their respective MECs. Risk of mixtures was demonstrated in 100% of the samples with insecticides accounting for 60% of the total risk identified. The overall link between the RA and the actual situation in the field must be considerably strengthened, and field studies on pesticide exposure and effects should be carried out to assist the improvement of predictive approaches used for regulatory purposes.  相似文献   

13.
Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.  相似文献   

14.
The influence of pH (6.0-9.0), natural organic matter (NOM) (0-10 mg C/L) and ionic strength (IS) (1.7-40 mM) on 14 nm CeO2 NP aggregation and ecotoxicity towards the alga Pseudokirchneriella subcapitata was assessed following a central composite design. Mean NP aggregate sizes ranged between 200 and 10000 nm. Increasing pH and IS enhanced aggregation, while increasing NOM decreased mean aggregate sizes. The 48 h-ErC20s ranged between 4.7 and 395.8 mg CeO2/L. An equation for predicting the 48 h-ErC20 (48 h-ErC20 = −1626.4 × (pH) + 109.45 × (pH)2 + 116.49 × ([NOM]) − 14.317 × (pH) × ([NOM]) + 6007.2) was developed. In a validation study with natural waters the predicted 48 h-ErC20 was a factor 1.08-2.57 lower compared to the experimental values.  相似文献   

15.
The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.  相似文献   

16.
Environmental Science and Pollution Research - Water stored in open-pit lakes can be a water resource when the mine is closed. This study aimed to develop a reliable model to evaluate the water...  相似文献   

17.
Environmental Science and Pollution Research - The paper presents an assessment of vegetation (composition and cover-abundance), nutrient supply, and especially sulfur accumulation in the trees...  相似文献   

18.

Purpose

To examine if chronic exposure of feral fish to elevated Pb concentrations in the river water (up to 1???g?L?1), which are still lower than European recommendations for dissolved Pb in surface waters (7.2???g?L?1; EPCEU (Official J L 348:84, 2008)), would result in Pb accumulation in selected fish tissues.

Methods

Lead concentrations were determined by use of HR ICP-MS in the gill and hepatic soluble fractions of European chub (Squalius cephalus) caught in the Sutla River (Croatia?CSlovenia).

Results

At the site with increased dissolved Pb in the river water, soluble gill Pb levels (17.3???g?L?1) were approximately 20 times higher compared to uncontaminated sites (0.85???g?L?1), whereas the ratio between contaminated (18.1???g?L?1) and uncontaminated sites (1.17???g?L?1) was lower for liver (15.5). Physiological variability of basal Pb concentrations in soluble gill and hepatic fractions associated to fish size, condition, sex, or age was not observed, excluding the possibility that Pb increase in chub tissues at contaminated site could be the consequence of studied biotic parameters. However, in both tissues of Pb-exposed specimens, females accumulated somewhat more Pb than males, making female chubs potentially more susceptible to possible toxic effects.

Conclusions

The fact that Pb increase in gill and hepatic soluble fractions of the European chub was not caused by biotic factors and was spatially restricted to one site with increased dissolved Pb concentration in the river water points to the applicability of this parameter as early indicator of Pb exposure in monitoring of natural waters.  相似文献   

19.
Bayer-Raich M  Jarsjö J  Teutsch G 《Journal of contaminant hydrology》2007,90(3-4):240-51; discussion 252-7
We consider the results of a recent paper in this journal [Zeru, A. and Sch?fer, G., 2005. Analysis of groundwater contamination using concentration-time series recorded during an integral pumping test: Bias introduced by strong concentration gradients within the plume. Journal of Contaminant Hydrology 81 (2005) 106-124], which addresses the field-scale characterisation of contaminant plumes in groundwater. There, it is concluded that contaminant concentration gradients can bias Integral Pumping Test (IPT) interpretations considerably, in particular if IPTs are conducted in advective fronts of contaminant plumes. We discuss implications of this setting and also argue that the longitudinal and transverse dispersivities used in the examples of Zeru and Sch?fer (2005) of up to 30 m and 3 m, respectively, are generally very high for the here relevant capture zone scale (<20 m). However, regardless of both longitudinal and transverse concentration gradients, we further show through a counter-example that IPT results are unbiased as long as the concentration attenuation along the flow direction is linear over the capture zone extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号