首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Abstract: A study was conducted between September 2003 and September 2006 to obtain baseline sediment inventories and monitor sediment transport and storage along a 3.7 km length of the channel of Valley Creek within Valley Forge National Historical Park, Pennsylvania. Valley Creek is a tributary of the Schuylkill River and drains an urbanizing 60.6 km2 watershed that currently has 18% impervious land cover. Numerous field methods were employed to measure the suspended sediment yield, longitudinal profile, cross‐sections, banklines, and particle size distribution of the streambed. Suspended sediment yield for the watershed was measured at a USGS gage located just upstream of the park boundary between July 2004 and July 2005, the period corresponding to field surveys of bank erosion and channel change. The estimated suspended sediment yield of 95.7 t/km2/year is representative of a year with unusually high discharge, including a storm event that produced a peak of 78 m3/s, the second highest discharge on record for the USGS gage. Based on the median annual streamflow for the 24 years of record at the USGS gage from 1983 to 2006, the median annual sediment yield is estimated to be closer to 34 t/km2/year, considerably lower than median and mean values for other sites within the region. The mass of silt, clay, and fine sand derived from bank erosion along the 3.7 km study reach during the field survey period accounts for an estimated 2,340 t, equivalent to about 43% of the suspended sediment load. The mass of fine sediment stored in the bed along the study reach was estimated at 1,500 t, with about 330 t of net erosion during the study period. Although bank erosion appears to be a potentially dominant source of sediment by comparison with annual suspended sediment load, bed sediment storage and potential for remobilization is of the same order of magnitude as the mass of sediment derived from bank erosion.  相似文献   

2.
ABSTRACT: Incised channels are caused by an imbalance between sediment transport capacity and sediment supply that alters channel morphology through bed and bank erosion. Consistent sequential changes in incised channel morphology may be quantified and used to develop relationships describing quasi‐equilibrium conditions in these channels. We analyzed the hydraulic characteristics of streams in the Yazoo River Basin, Mississippi in various stages of incised channel evolution. The hydraulic characteristics of incising channels were observed to follow the sequence predicted by previous conceptual models of incised channel response. Multiple regression models of stable slopes in quasi‐equilibrium channels that have completed a full evolutionary sequence were developed. These models compare favorably with analytical solutions based on the extremal hypothesis of minimum stream power and empirical relationships from other regions. Appropriate application of these empirical relationships may be useful in preliminary design of stream rehabilitation strategies.  相似文献   

3.
ABSTRACT: Channel incision is a pervasive problem that threatens infrastructure, destroys arable land, and degrades environmental resources. A program initiated in 1983 is developing technology for rehabilitation of watersheds with erosion and sedimentation problems caused by incision. Demonstration projects are located in 15 watersheds in the hills of northwest Mississippi. Watershed sizes range from 0.89 to 1,590 km2, and measured suspended sediment yields average about 1,100 t km-2-yr-1. Water quality is generally adequate to support aquatic organisms, but physical habitat conditions are poor. Rehabilitation measures, which are selected and laid out using a subjective integration of hydraulic and geotechnical stability analyses, include grade controls, bank protection, and small reservoirs. Aquatic habitat studies indicate that stone-protected stilling basins below grade-control weirs and habitats associated with drop pipes and stone spur dikes are assets to erosion-damaged streams. Additional recovery of habitat resources using modified stone stabilization designs, woody vegetation plantings, and reservoir outlets designed to provide non-zero minimum flows is under investigation.  相似文献   

4.
ABSTRACT: Incised channels are caused by an imbalance between sediment transport capacity and sediment supply to the stream. The resulting bed and bank erosion alter channel morphology and stability. Geomorphological models of incised channel evolution can provide guidance in the selection of engineering design alternatives for incised channel rehabilitation. This paper describes how incised channel evolution models may be coupled with a dimensionless stability diagram to facilitate evaluation of rehabilitation alternatives. In combination, the models provide complementary views of channel processes from geomorphic and engineering perspectives.  相似文献   

5.
Setegn, Shimelis G., Bijan Dargahi, Ragahavan Srinivasan, and Assefa M. Melesse, 2010. Modeling of Sediment Yield From Anjeni-Gauged Watershed, Ethiopia Using SWAT Model. Journal of the American Water Resources Association (JAWRA) 46(3):514-526. DOI: 10.1111/j.1752-1688.2010.00431.x Abstract: The Soil and Water Assessment Tool (SWAT) was tested for prediction of sediment yield in Anjeni-gauged watershed, Ethiopia. Soil erosion and land degradation is a major problem on the Ethiopian highlands. The objectives of this study were to evaluate the performance and applicability of SWAT model in predicting monthly sediment yield and assess the impacts of subbasin delineation and slope discretization on the prediction of sediment yield. Ten years monthly meteorological, flow and sediment data were used for model calibration and validation. The annual average measured sediment yield was 24.6 tonnes/ha. The annual average simulated sediment yield was 27.8 and 29.5 tones/ha for calibration and validation periods, respectively. The study found that the observed values showed good agreement with the simulated sediment yield with Nash-Sutcliffe efficiency (NSE) = 0.81, percent bias (PBIAS) = 28%, RMSE-observations standard deviation ratio (RSR) = 0.23, and coefficient of determination (R²) = 0.86 for calibration and NSE = 0.79, PBIAS = 30%, RSR = 0.29, and R² = 0.84 for validation periods. The model can be used for further analysis of different management scenarios that could help different stakeholders to plan and implement appropriate soil and water conservation strategies.  相似文献   

6.
The drawdown of reservoirs behind dams is an important management strategy (e.g., for removal of aging infrastructure, flushing of sediment), and an opportunity to study erosional processes. A numerical model was developed to examine retrogressive bank erosion across reservoir drawdown scenarios and to evaluate factors controlling the rate, volume, and mechanisms of lateral erosion. Modeled processes included dynamic drawdown of groundwater, sequential slope failures via limit equilibrium analysis, and retrogression considering stress interaction between failing blocks. Field measurements were coupled with Staged, Slow, and Rapid drawdown scenarios. Results highlight the importance of including retrogression as an avenue for lateral erosion, as sequential block failures were found to occur in all scenarios except Slow drawdown. This result indicates that bank stability models without some means of characterizing the evolution of slope failure during drawdown are likely underestimating bank failure rates and volumes. In contrast, dynamic groundwater was not found to be a dominant control for any drawdown scenario. Model results also demonstrate that the drawdown increment is a first-order control on slope instability via the development of drained or undrained conditions. A majority of failures occurred under undrained conditions. To maximize slope stability, using slow drawdown to activate internal friction under drained conditions is essential. The design of the drawdown rate created a tradeoff between the amount of impact created and when the impact is produced. The study also articulated the need for coupling models and field observations for rapidly changing systems.  相似文献   

7.
Abstract:  This study applies spatial analyses to examine the consequences of accelerated urban expansion on a hydrologic system over a period of 24 years. Three sets of historical aerial photos are used in a GIS analysis to document the geomorphic history of Las Vegas Wash, which drains the rapidly growing Las Vegas urban area in southern Nevada. New spatial techniques are introduced to make quantitative measurements of the erosion at three specific time intervals in the hydrologic evolution of the channel and floodplain. Unlike other erosion studies that use two different elevation surfaces to assess erosion, this study used a single elevation surface to remove systematic and nonsystemic elevation errors. The spatial analysis quantifies channel changes for discrete time periods, calculates erosion volumes, and provides a foundation to examine how the specific mechanisms related to urban expansion have affected Las Vegas Wash. The erosion calculated over 24 years is the largest documented sediment loss attributed to the effect of rapid urban growth.  相似文献   

8.
The Bank Assessment of Nonpoint source Consequences of Sediment (BANCS) framework allows river scientists to predict annual sediment yield from eroding streambanks within a hydrophysiographic region. BANCS involves field data collection and the calibration of an empirical model incorporating a bank erodibility hazard index (BEHI) and near‐bank shear stress (NBS) estimate. Here we evaluate the applicability of BANCS to the northern Gulf of Mexico coastal plain, a region that has not been previously studied in this context. Erosion rates averaged over two years expressed the highest variability of any existing BANCS study. As a result, four standard BANCS models did not yield statistically significant correlations to measured erosion rates. Modifications to two widely used NBS estimates improved their correlations (r2 = 0.31 and r2 = 0.33), but further grouping of the data by BEHI weakened these correlations. The high variability in measured erosion rates is partly due to the regional hydrologic and climatic characteristics of the Gulf coastal plains, which include large, infrequent precipitation events. Other sources of variability include variations in bank vegetation and the complex hydro‐ and morphodynamics of meandering, sand bed channels. We discuss directions for future research in developing a streambank erosion model for this and similar regions.  相似文献   

9.
Recent Changes of Sediment Yield in the Upper Yangtze, China   总被引:2,自引:0,他引:2  
/ Reservoir sedimentation is one of the many environmental problems associated with the Three Gorges Project in China. The rate and characteristics of sedimentation that directly affect the operating life of the reservoir are closely related to soil erosion and sediment transport dynamics in the upstream catchment and to the ability to manage the throughput of sediment-laden waters. The recent changes in sediment yield were examined using gauging data from 187 stations of varying sizes from less than 100 km2 to larger than 1,000,000 km2 in the Upper Yangtze basin between 1956 and 1987. Whereas many previous studies have concentrated on the trends in the main channel of the Yangtze, the distributed pattern of changes across the whole catchment is complex. Results from time series analysis indicate ten stations, mainly located in the Dadu and Wu tributaries (with a total incremental catchment area of 78,963 km2) have shown increasing trajectories of sediment yield, and six stations, located in the upper Jialing and Tuo tributaries (with a total incremental area of 27,816 km2) have experienced decreasing trajectories. By dividing the time series into three components, it is possible to map significant decadal changes in sediment yields that can be related to phases of deforestation and the construction of water conservancy projects. Most of the observed decreases in sediment yield are associated with large reservoir schemes on tributary rivers. The lack of evidence for increasing sediment input to the Three Gorges area masks a considerable variation in sediment conveyance and storage within the Upper Yangtze catchment.KEY WORDS: Sediment yield; Reservoir sedimentation; Three Gorges Project; Time series analysis; China  相似文献   

10.
Schilling, Keith E., Thomas M. Isenhart, Jason A. Palmer, Calvin F. Wolter, and Jean Spooner, 2011. Impacts of Land‐Cover Change on Suspended Sediment Transport in Two Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 47(4):672‐686. DOI: 10.1111/j.1752‐1688.2011.00533.x Abstract: Suspended sediment is a major water quality problem, yet few monitoring studies have been of sufficient scale and duration to assess the effectiveness of land‐use change or conservation practice implementation at a watershed scale. Daily discharge and suspended sediment export from two 5,000‐ha watersheds in central Iowa were monitored over a 10‐year period (water years 1996‐2005). In Walnut Creek watershed, a large portion of land was converted from row crop to native prairie, whereas in Squaw Creek land use remained predominantly row crop agriculture. Suspended sediment loads were similar in both watersheds, exhibiting flashy behavior typical of incised channels. Modeling suggested that expected total soil erosion in Walnut Creek should have been reduced 46% relative to Squaw Creek due to changes in land use, yet measured suspended sediment loads showed no significant differences. Stream mapping indicated that Walnut Creek had three times more eroding streambank lengths than did Squaw Creek suggesting that streambank erosion dominated sediment sources in Walnut Creek and sheet and rill sources dominated sediment sources in Squaw Creek. Our results demonstrate that an accounting of all sources of sediment erosion and delivery is needed to characterize sediment reductions in watershed projects combined with long‐term, intensive monitoring and modeling to account for possible lag times in the manifestation of the benefits of conservation practices on water quality.  相似文献   

11.
Hydrologic modeling outputs are influenced by how a watershed system is represented. Channel routing is a typical example of the mathematical conceptualization of watershed landscape and processes in hydrologic modeling. We investigated the sensitivity of accuracy, equifinality, and uncertainty of Soil and Water Assessment Tool (SWAT) modeling to channel dimensions to demonstrate how a conceptual representation of a watershed system affects streamflow and sediment modeling. Results showed the amount of uncertainty and equifinality strongly responded to channel dimensions. On the other hand, the model performance did not significantly vary with the changes in the channel representation due to the degree of freedom allowed by the conceptual nature of hydrologic modeling in the parameter calibration. Such findings demonstrated good modeling performance statistics do not necessarily mean small output uncertainty, and partial improvements in the watershed representation may neither increase modeling accuracy nor reduce uncertainty. We also showed the equifinality and uncertainty of hydrologic modeling are case‐dependent rather than specific to models or regions, suggesting great caution should be used when attempting to transfer uncertainty analysis results to other modeling studies, especially for ungauged watersheds. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

12.
Managed forests generally produce high water quality, but degradation is possible via sedimentation if proper management is not implemented during forest harvesting. To mitigate harvesting effects on total watershed sediment yield, it is necessary to understand all processes that contribute to these effects. Forest harvesting best management practices (BMPs) focus almost exclusively on overland sediment sources, whereas in‐and‐near stream sources go unaddressed although they can contribute substantially to sediment yield. Thus, we propose a new framework to classify forest harvesting effects on stream sediment yield according to their direct and indirect processes. Direct effects are those caused by erosion and sediment delivery to surface water from overland sources (e.g., forest roads). Indirect effects are those caused by a shift in hydrologic processes due to tree removal that accounts for increases in subsurface and surface flows to the stream such that alterations in water quality are not predicated upon overland sediment delivery to the stream, but rather in‐stream processes. Although the direct/indirect distinction is often implicit in forest hydrology studies, we have formalized it as a conceptual model to help identify primary drivers of sediment yield after forest harvesting in different landscapes. Based on a literature review, we identify drivers of these effects in five regions of the United States, discuss current forest management BMPs, and identify research needs.  相似文献   

13.
Abstract: Alluvial fans are continuously being developed for residential, industrial, commercial, and agricultural uses in southern California. Development and alteration of alluvial fans need to consider the possibility of mud and debris flows from upstream mountain watersheds affected by fires. Accurate prediction of sediment yield (or hyper‐concentrated sediment yield) is essential for the design, operation, and maintenance of debris basins to safeguard properly the general populace. This paper presents a model for the prediction of sediment yields that result from a combination of fire and subsequent storm events. The watersheds used in this analysis are located in the foothills of the San Gabriel Mountains in southern California. A multiple regression analysis is first utilized to establish a fundamental statistical relationship for sediment yield as a function of relief ratio, drainage area, maximum 1‐h rainfall intensity and fire factor using 45 years of data (1938‐1983). In addition, a method for multi‐sequence sediment yield prediction under fire conditions was developed and calibrated using 17 years of sediment yield, fire, and precipitation data for the period 1984‐2000. After calibration, this model was verified by applying it to provide a prediction of the sediment yields for the 2001‐2002 fire events in southern California. The findings indicate a strong correlation between the estimated and measured sediment yields. The proposed method for sequence sediment yield prediction following fire events can be a useful tool to schedule cleanout operations for debris basins and to develop an emergency response strategy for the southern California region where plentiful sediment supplies exist and frequent fires occur.  相似文献   

14.
Abstract: A present and future challenge for water resources engineers is to extend the useful life of our dams and reservoirs. Ongoing reservoir sedimentation in impoundments must be addressed; sedimentation in many reservoirs already limits project benefits and effective project life. Sustainability requires that incoming sediment be moved downstream past the impounding dam. We use Lewis and Clark Lake, the most downstream of the six Missouri River main stem reservoirs, to demonstrate how a reservoir in advanced stages of its project life could be converted to a sustainable system with local benefits exceeding costs by a factor of 1.5. Full consideration of benefits would further enhance project justification. The proposed strategy involves four phases that will take about 50 years to complete. Cost estimates for this potential project range from the quantitative to the plausible, but it is clear that the results justify a full engineering, environmental, and economic study of this model project. If implemented, the project will create scientific knowledge and develop technologies useful for achieving sustainability at many other reservoirs in the Mississippi River basin and beyond.  相似文献   

15.
Reservoirs are important for various purposes including flood control, water supply, power generation, and recreation. The aging of America's reservoirs and progressive loss of water storage capacity resulting from ongoing sedimentation, coupled with increasing societal needs, will cause the social, economic, environmental, and political importance of reservoirs to continually increase. The short‐ and medium‐term (<50 years) environmental consequences of reservoir construction and operation are well known and include an altered flow regime, lost connectivity (longitudinal, floodplain), an altered sediment regime, substrate compositional change, and downstream channel degradation. In general, reservoir‐related changes have had adverse consequences for the natural ecosystem. Longer term (>50 years) environmental changes as reservoirs enter “old” age are less understood. Additional research is needed to help guide the future management of aging reservoir systems and support the difficult decisions that will have to be made. Important research directions include assessment of climate change effects on aging and determination of ecosystem response to ongoing aging and various management actions that may be taken with the intent of minimizing or reversing the physical effects of aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号