首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The quality and quantity of residential stormwater runoff from a control, traditional, and low impact development (LID) watershed were compared in a paired watershed study. A traditional neighborhood was built using typical subdivision standards while a LID design was constructed with best management practices including grass swales, cluster housing, shared driveways, rain gardens, and a narrower pervious concrete‐paver road. Weekly, flow‐weighted, composite samples of stormwater were analyzed for nitrate + nitrite‐nitrogen (NO3 + NO2‐N), ammonia‐nitrogen (NH3‐N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS). Monthly composite samples were analyzed for total copper (Cu), lead (Pb), and zinc (Zn). Mean weekly storm flow increased (600x) from the traditional watershed in the postconstruction period. Increased exports of TKN, NO3 + NO2‐N, NH3‐N, TP, Cu, Zn, and TSS in runoff were associated with the increased storm flow. Postconstruction storm flow in the LID watershed was reduced by 42% while peak discharge did not change from preconstruction conditions. Exports were reduced from the LID watershed for NH3‐N, TKN, Pb, and Zn, while TSS and TP exports increased.  相似文献   

2.
Welker, Andrea L., James D. Barbis, and Patrick A. Jeffers, 2012. A Side‐by‐Side Comparison of Pervious Concrete and Porous Asphalt. Journal of the American Water Resources Association (JAWRA) 48(4): 809‐819. DOI: 10.1111/j.1752‐1688.2012.00654.x Abstract: This article compares the performance of two permeable pavements, pervious concrete and porous asphalt, that were installed side‐by‐side in fall 2007. Because the pavements are located directly adjacent to one another, they experience the same vehicle loads, precipitation, and pollution loads. These permeable pavements are part of an infiltration stormwater control measure (SCM). This article focuses on the comparison of water quality parameters, maintenance and durability, and user perception. Eleven different water quality parameters were analyzed at this site for 19 different storm events over a one year period: pH, conductivity, total suspended solids, chlorides, total nitrogen, total phosphorus, total dissolved copper, total dissolved lead, total dissolved cadmium, total dissolved chromium, and total dissolved zinc. Results from the two pavement types were compared using the Mann–Whitney U‐test. The only parameter that was found to be statistically different between the two pavements was pH. Periodic inspection of the two pavement types indicated that after two years of use both pavements were wearing well. However, there was some evidence of clogging of both pavements and some evidence of surface wear. A survey of users of the lot indicated that the perception of these permeable pavements was favorable.  相似文献   

3.
    
This study examines the use of bioretention as a strategy to reduce the thermal impact associated with urban stormwater runoff in developing cold water stream watersheds. Temperature and flow data were collected during 10 controlled runs at a bioretention facility located in Blacksburg, Virginia. It was determined that bioretention has the ability to reduce the temperature of thermally charged stormwater runoff received from an asphalt surface. Significant reductions in peak and average temperatures (p < 0.001) were observed. However, this facility was unable to consistently reduce the temperature below the threshold for natural trout waters in Virginia. The ability of bioretention to reduce runoff volume and peak flow rate also serves to reduce the hydrothermal impact. An average thermal pollution reduction of nearly 37 MJ/m3 was calculated using an adopted threshold temperature of 20°C. Based on the results of this study, it was concluded that properly designed bioretention systems have the capability to reduce the thermal impact of urban stormwater runoff on cold water stream ecosystems.  相似文献   

4.
    
We present a conceptual framework that relates agricultural best management practice (BMP) effectiveness with dominant hydrological flow paths to improve nonpoint source (NPS) pollution management. We use the framework to analyze plot, field and watershed scale published studies on BMP effectiveness to develop transferable recommendations for BMP selection and placement at the watershed scale. The framework is based on the location of the restrictive layer in the soil profile and distinguishes three hydrologic land types. Hydrologic land type A has the restrictive layer at the surface and BMPs that increase infiltration are effective. In land type B1, the surface soil has an infiltration rate greater than the prevailing precipitation intensity, but there is a shallow restrictive layer causing lateral flow and saturation excess overland flow. Few structural practices are effective for these land types, but pollutant source management plans can significantly reduce pollutant loading. Hydrologic land type B2 has deep, well‐draining soils without restrictive layers that transport pollutants to groundwater via percolation. Practices that increased pollutant residence time in the mixing layer or increased plant water uptake were found as the most effective BMPs in B2 land types. Matching BMPs to the appropriate land type allows for better targeting of hydrologically sensitive areas within a watershed, and potentially more significant reductions of NPS pollutant loading.  相似文献   

5.
  总被引:1,自引:0,他引:1  
The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001‐2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.  相似文献   

6.
ABSTRACT: A “user-friendly” computer program has been developed for application in personal computers for preliminary design, evaluation, and cost effectiveness analysis of various best management practice (BMP) measures to control stormwater quantity and quality. The algorithms utilize the SCS TR-55 method for calculating runoff hydrographs for a single storm event and a first order pollutant washoff equation to generate pollutographs. Sensitivity analyses based on different policy scenarios is performed on a hypothetical watershed for the purpose of illustration. Three types of BMP measures, namely detention ponds (dry, wet, and extended wet ponds), infiltration trenches, and porous pavements are considered. It is found that the extended wet ponds have the best cost effective performance of the measures evaluated.  相似文献   

7.
ABSTRACT: The objective of this study was to evaluate the effectiveness of various land-use practices upon the production of nonpoint source pollutants from small agricultural watersheds in Northern Virginia. Pollutant production at each watershed was determined by individual monitoring stations. Data analysis consisted of a determination of the site specific pollutant yield for similar watersheds subjected to differing crop management approaches. These collected data were then compared to those generated by a parametric, event model developed for this investigation. This synthetic data base was used to eliminate or reduce errors resulting from monitoring site differences and to extend the collected data for additional comparisons.  相似文献   

8.
Newbold, J. Denis, Susan Herbert, Bernard W. Sweeney, Paul Kiry, and Stephen J. Alberts, 2010. Water Quality Functions of a 15-Year-Old Riparian Forest Buffer System. Journal of the American Water Resources Association (JAWRA) 46(2):299-310. DOI: 10.1111/j.1752-1688.2010.00421.x Abstract: We monitored long-term water quality responses to the implementation of a three-zone Riparian Forest Buffer System (RFBS) in southeastern Pennsylvania. The RFBS, established in 1992 in a 15-ha agricultural (row crop) watershed, consists of: Zone 1, a streamside strip (∼10 m wide) of permanent woody vegetation for stream habitat protection; Zone 2, an 18- to 20-m-wide strip reforested in hardwoods upslope from Zone 2; and Zone 3, a 6- to 10-m-wide grass filter strip in which a level lip spreader was constructed. The monitoring design used paired watersheds supplemented by mass balance estimates of nutrient and sediment removal within the treated watershed. Tree growth was initially delayed by drought and deer damage, but increased after more aggressive deer protection (1.5 m polypropylene shelters or wire mesh protectors) was instituted. Basal tree area increased ∼20-fold between 1998 and 2006, and canopy cover reached 59% in 2006. For streamwater nitrate, the paired watershed comparison was complicated by variations in both the reference stream concentrations and in upslope groundwater nitrate concentrations, but did show that streamwater nitrate concentrations in the RFBS watershed declined relative to the reference stream from 2002 through the end of the study in early 2007. A subsurface nitrate budget yielded an average nitrate removal by the RFBS of 90 kg/ha/year, or 26% of upslope subsurface inputs, for the years 1997 through 2006. There was no evidence from the paired watershed comparison that the RFBS affected streamwater phosphorus concentration. However, groundwater phosphorus did decline within the buffer. Overland flow sampling of 23 storms between 1997 and 2006 showed that total suspended solids concentration in water exiting the RFBS to the stream was on average 43% lower than in water entering the RFBS from the tilled field. Particulate phosphorus concentration was lower by 22%, but this removal was balanced by a 26% increase in soluble reactive phosphorus so that there was no net effect on total phosphorus.  相似文献   

9.
    
Abstract: A pervious concrete infiltration basin was installed on the campus of Villanova University in August 2002. A study was undertaken to determine what contaminants, if any, were introduced to the soils underlying the site as a result of this best management practice (BMP). The average infiltration rate at the site is approximately 10?4 cm/s. The drainage area (5,208 m2) consists of grassy surfaces (36%), standard concrete/asphalt (30%), and roof surfaces (30%) that directly connect to the infiltration beds via downspouts and storm sewers. Composite samples of infiltrated stormwater were collected from the vadose zone using soil moisture suction devices. Discrete samples were collected from a port within an infiltration bed and a downspout from a roof surface. Samples from 17 storms were analyzed for pH, conductivity, and concentrations of suspended solids, dissolved solids, chloride, copper, and total nitrogen. Copper and chloride were the two constituents of concern at this site. Copper was introduced to the system from the roof, while chloride was introduced from deicing practices. Copper was not found in porewater beneath 0.3 m and the chloride was not significant enough to impact the ground water. This research indicates that with proper siting, an infiltration BMP will not adversely impact the ground water.  相似文献   

10.
ABSTRACT: Geographic Information Systems (GIS) are being used increasingly as a method of preparing, analyzing, and displaying data for watershed analysis and modeling. Although GIS technology is a powerful tool for integrating and analyzing watershed characteristics, the initial preparation of the necessary database is often a time consuming and costly endeavor. This demonstration project assesses the viability of creating a cost-effective spatial database for urban stormwater modeling from existing digital and hard-copy data sources. The GIS was used to provide input parameters to the Source Loading and Management Model (SLANM), an empirical urban stormwater quality model. Land use characteristics, drainage boundaries, and soils information were geocoded and referenced to a base data layer consisting of transportation features. GIS overlay and data manipulation capabilities were utilized to preprocess the input data for the model. Model output was analyzed through postprocessing by GIS, and results were compared to a similar recent modeling study of the same watershed. The project, undertaken for a small urban watershed located in Plymouth, Minnesota, successfully demonstrates that the use of GIS in stormwater management can allow even small communities to reap the benefits of stormwater quality modeling.  相似文献   

11.
    
n integrated approach coupling water quality computer simulation modeling with a geographic information system (GIS) was used to delineate critical areas of nonpoint source (NPS) pollution at the watershed level. Two simplified pollutant export models were integrated with the Virginia Geographic Information System (VirGIS) to estimate soil erosion, sediment yield, and phosphorus (P) loading from the Nomini Creek watershed located in Westmoreland County, Virginia. On the basis of selected criteria for soil erosion rate, sediment yield, and P loading, model outputs were used to identily watershed areas which exhibit three categories (low, medium, high) of non-point source pollution potentials. The percentage of the watershed area in each category, and the land area with critical pollution problems were also identified. For the 1505-ha Nomini Creek watershed, about 15, 16, and 21 percent of the watershed area were delineated as sources of critical soil erosion, sediment, and phosphorus pollution problems, respectively. In general, the study demonstrated the usefulness of integrating GIS with simulation modeling for nonpoint source pollution control and planning. Such techniques can facilitate making priorities and targeting nonpoint source pollution control programs.  相似文献   

12.
Abstract: The constrained ordination method from quantitative ecology was utilized to assess the relationship between landscape patterns and nonpoint‐source (NPS) pollution for the purpose of identifying effective water‐quality improvement practices in Danjiangkou Reservoir (DJKR) basin, China. The soil and water assessment tool (SWAT) was applied to simulate NPS pollution and the Fragstats model was applied to calculate the landscape metrics. The study concluded that organic nutrients formed the main NPS pollutant in the DJKR basin and that most of the NPS pollution occurred along with soil loss. Based on partial redundancy analysis, the conclusion that landscape metrics were significantly correlated to NPS pollution indices was obtained. Specifically, the composition of LULC (land use/land cover) was the most effective factor to estimate NPS pollution. Dry cultivated land was identified as the main source of NPS pollution, and paddy fields were characterized with the most intensive soluble nutrients loss. In addition, the reason that fragmented and complex landscape patterns exacerbate NPS pollution was that natural landscape composed most of this area. Moreover, the fragmented natural landscape indicated intensive agricultural activities that were the crucial trigger for NPS pollution. Combined with the economic condition in China, Conversion of Cropland to Forests Program (CCFP) should be conducted selectively and gradually in the DJKR basin.  相似文献   

13.
An economic analysis of nonpoint source pollution management was conducted for the Nansemond River and Chuckatuck Creek watersheds in Southeast Virginia. The potential effects of alternative public policies on farm income, land use, and pollution loadings were investigated. Regulatory programs could have quite different impacts depending on which pollutant is targeted. Cost-share rates greater than 50 percent would have little additional effect on pollution from crop enterprises, but would reduce pollution from livestock  相似文献   

14.
Kenney, Melissa A., Peter R. Wilcock, Benjamin F. Hobbs, Nicholas E. Flores, and Daniela C. Martínez, 2012. Is Urban Stream Restoration Worth It? Journal of the American Water Resources Association (JAWRA) 48(3): 603-615. DOI: 10.1111/j.1752-1688.2011.00635.x Abstract: Public investment in urban stream restoration is growing, yet little has been done to quantify whether its benefits outweigh its cost. The most common drivers of urban stream projects are water quality improvement and infrastructure protection, although recreational and aesthetic benefits are often important community goals. We use standard economic methods to show that these contributions of restoration can be quantified and compared to costs. The approach is demonstrated with a case study in Baltimore, Maryland, a city with a legal mandate to reduce its pollutant load. Typical urban stream restoration costs of US$500-1,200 per foot are larger than the cost of the least expensive alternatives for management of nitrogen loads from stormwater (here, detention ponds, equivalent to $30-120 per foot of restored stream) and for protecting infrastructure (rip-rap armoring of streambanks, at $0-120 per foot). However, the higher costs of stream restoration can in some cases be justified by its aesthetic and recreational benefits, valued using a contingent valuation survey at $560-1,100 per foot. We do not intend to provide a definitive answer regarding the worth of stream restoration, but demonstrate that questions of worth can be asked and answered. Broader application of economic analysis would provide a defensible basis for understanding restoration benefits and for making restoration decisions.  相似文献   

15.
    
ABSTRACT: This paper illustrates a method of using a hydrologic/water quality model to analyze alternative management practices and recommend best management practices (BMPs) to reduce nitrate-nitrogen (NO3--N) leaching losses. The study area for this research is Tipton, an agriculturally intensive area in southwest Oklahoma. We used Erosion Productivity Impact Calculator (EPIC), a field-scale hydrologic/water quality model, to analyze alternative agricultural management practices. The model was first validated using observed data from a cotton demonstration experiment conducted in the Tipton area. Following that, EPIC was used to simulate fertilizer response curves for cotton and wheat crops under irrigated and dryland conditions. From the fertilizer response functions (N-uptake and N-leaching), we established an optimum fertilizer application rate for each crop. Individual crop performances were then simulated at optimum fertilizer application rates and crop rotations for the Tipton area, which were selected based on three criteria: (a) minimum amount of NO3--N leached, (b) minimum concentration of NO3--N leached, and (c) maximum utilization of NO3--M. Further we illustrate that by considering residual N from alfalfa as a credit to the following crop and crediting NO3--N present in the irrigation water, it is possible to reduce further NO3--N loss without affecting crop yield.  相似文献   

16.
Wadzuk, Bridget M., Matthew Rea, Gregg Woodruff, Kelly Flynn, and Robert G. Traver, 2010. Water-Quality Performance of a Constructed Stormwater Wetland for All Flow Conditions. Journal of the American Water Resources Association (JAWRA) 46(2):385-394. DOI: 10.1111/j.1752-1688.2009.00408.x Abstract: Results from a multiyear study demonstrate that a constructed stormwater wetland (CSW) improves urban stormwater runoff quality mitigating downstream impacts. Best management practices, such as CSWs, can comprehensively treat the various scales of stormwater runoff issues. Discrete sample analysis was used to investigate the CSW effect for storm events and base-flow periods on water-quality parameters [i.e., total suspended solids, total dissolved solids, total nitrogen, phosphorous (total and reactive), chloride, heavy metals (zinc, lead, and copper), and Escherichia coli]. The primary finding was that stormwater sediment load was removed through the CSW for all flow conditions during all seasons. The mechanisms responsible for the removal of suspended solids, including slower flow velocity, longer retention times, and vegetative contact, also reduced the mass of nutrients discharged downstream throughout the year. Exceedance probabilities were used to evaluate the expected pollutant reductions of nutrients and to incorporate the effect of natural flow variation on quality. Other findings included the observation that there was no significant difference in the performance of the CSW over two-year-long periods four years apart, indicating that a CSW is effective for an extended period.  相似文献   

17.
    
We present the results of a replicated before‐after‐control‐impact study on 33 streams to test the effectiveness of riparian rules for private and State forests at meeting temperature criteria in streams in western Oregon. Many states have established regulatory temperature thresholds, referred to as numeric criteria, to protect cold‐water fishes such as salmon and trout. We examined across‐year and within‐year patterns of exceedance at control and treatment stream temperature probes. Determining whether an exceedance at the downstream end of a harvest was unambiguously related to harvest proved surprisingly difficult. The likelihood of a site exceeding its numeric criterion appeared related, in part, to the site's preharvest temperature range. Four control reaches as well as three preharvest treatment reaches exceeded their numeric criteria, necessitating additional analysis to evaluate timber harvest impacts. Nine percent of sites (3 of 33) both exceeded their numeric criteria and exhibited a potential harvest effect (16.7% of private sites [3 of 18], 0% of State sites [0 of 15]). After harvest, exceedances were typically observed in only the first of the two post‐harvest years. These findings highlight the importance of including temporal and spatial controls in temperature assessments of numeric criteria when the assessment's purpose is to determine whether exceedances are related to human activities.  相似文献   

18.
    
ABSTRACT: Controlling agricultural nonpoint source pollution from livestock grazing is a necessary step to improving the water quality of the nation's streams. The goal of enhanced stream water quality will most likely result from the implementation of an integrated system of best management practices (BMPs) linked with stream hydraulic and geomorphic characteristics. However, a grazing BMP system is often developed with the concept that BMPs will function independently from interactions among controls, climatic regions, and the multifaceted functions exhibited by streams. This paper examines the peer reviewed literature pertaining to grazing BMPs commonly implemented in the southern humid region of the United States to ascertain effects of BMPs on stream water quality. Results indicate that the most extensive BMP research efforts occurred in the western and midwestern U.S. While numerous studies documented the negative impacts of grazing on stream health, few actually examined the success of BMPs for mitigating these effects. Even fewer studies provided the necessary information to enable the reader to determine the efficacy of a comprehensive systems approach integrating multiple BMPs with pre‐BMP and post‐BMP geomorphic conditions. Perhaps grazing BMP research should begin incorporating geomorphic information about the streams with the goal of achieving sustainable stream water quality.  相似文献   

19.
Hancock, Gregory S., Jonathan W. Holley, and Randolph M. Chambers, 2010. A Field-Based Evaluation of Wet Retention Ponds: How Effective Are Ponds at Water Quantity Control? Journal of the American Water Resources Association (JAWRA) 46(6):1145–1158. DOI: 10.1111/j.1752-1688.2010.00481.x Abstract: Wet retention ponds are widely used structural stormwater best management practices (BMPs) with the primary goals of reducing peak flows and extending flow duration. Despite widespread use, few field-based studies have evaluated the success of wet retention ponds at meeting these goals. We determined pond elevation, flow rate, and pond volume over four years in five suburban watersheds in James City County, Virginia. We selected five ponds designed under regulations requiring a 24 hour inflow-to-outflow centroid lag time for a one year, 24 hour design storm. We used pressure transducers to measure pond water surface elevation at 5 min intervals, and calculated pond outflow and volume using rating curves obtained from site stormwater management plans (SWMPs). Peak inflows, peak outflows, and runoff ratios frequently exceeded SWMP calculations in measured events. Four ponds never achieved the required 24 hour inflow-to-outflow centroid lag for storms similar to the one year, 24 hour storm. These BMPs fail to achieve regulatory goals for channel protection because of regulatory loopholes, underprediction of rainfall intensity, unrealistic predictions of postdevelopment flows in SWMPs, and the inability of wet retention ponds to reduce overall runoff volume. While specific to one locality, the shortcomings highlighted suggest similar field-based assessments of retention pond performance are needed in other locations.  相似文献   

20.
Abstract: Multilevel or hierarchical models have been applied for a number of years in the social sciences but only relatively recently in the environmental sciences. These models can be developed in either a frequentist or Bayesian context and have similarities to other methods such as empirical Bayes analysis and random coefficients regression. In essence, multilevel models take advantage of the hierarchical structure that exists in many multivariate datasets; for example, water quality measurements may be taken from individual lakes, lakes are located in various climatic zones, lakes may be natural or man‐made, and so on. The groups, or levels, may effectively yield different responses or behaviors (e.g., nutrient load response in lakes) that often make retaining group membership more effective when developing a predictive model than when working with either all of the data together or working separately with the individuals. Here, we develop a multilevel model of the impact of farm level best management practices (BMPs) on phosphorus runoff. The result of this research is a model with parameters which vary with key practice categories and thus may be used to evaluate the effectiveness of these practices on phosphorus runoff. For example, it was found that the effect of fertilizer application rate on farm‐scale phosphorus loss is a function of the application method, the hydrologic soil group, and the land use (crop type). Further, results indicate that the most effective method for controlling fertilizer loss is through soil injection. In summary, the resultant multilevel model can be used to estimate phosphorus loss from farms and hence serve as a useful tool for BMP selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号