首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
开顶式气室原位研究水稻汞富集对大气汞浓度升高的响应   总被引:2,自引:1,他引:1  
采用开顶式气室熏气实验和土壤加汞培育实验,原位研究水稻各器官汞富集对大气汞质量浓度升高的响应关系.结果表明,水稻根中汞含量与大气汞质量浓度无显著相关性(P0.05),与土壤汞含量呈显著正相关(R=0.998 8,P0.05),表明水稻根中的汞主要来自于对土壤中汞的吸收累积.水稻茎中汞含量随大气汞质量浓度的升高呈线性增加(RB=0.964 6,RU=0.983 1,P0.05),且上部茎中汞含量高于下部茎;茎下部汞含量随土壤汞含量的升高呈线性增加(R=0.990 1,P0.05),茎上部汞含量随土壤汞含量的升高呈二次拟合增加(R=0.998 9,P0.05),且下部茎汞含量高于上部茎,说明茎汞含量受土壤和大气汞浓度的共同影响.水稻叶中汞含量与大气汞质量浓度呈显著正相关(R=0.998 5,P0.05),与土壤汞含量也有很好的线性关系(R=0.998 3,P=0.058 5),表明水稻从大气吸收的汞主要积累在叶片中,从土壤吸收的汞主要富集在根中并通过茎部向叶部传输.利用实验建立的函数关系对水稻地上生物质中汞的大气来源估算,至少60%~94%和56%~77%水稻叶和上部茎中的汞来自大气,而大气对下部茎仅贡献8%~56%.由此水稻地上部分生物质汞主要来自对大气汞的吸收,为区域大气汞的收支及汞循环模型提供理论依据.  相似文献   

2.
李雨芩  孙涛  邓晗  张成  王永敏  王定勇 《环境科学》2018,39(5):2472-2479
采用盆栽模拟试验,对汞(Hg)及甲基汞(MeHg)在酸性紫色水稻土中不同水稻生长期的动态变化进行了研究,并分析对比了总汞(THg)和MeHg在水稻体中的富集特征.结果表明:在水稻生长期间,土壤总汞含量变化较小,MeHg含量随时间增加而增加,土壤MeHg/THg值的变化趋势和土壤中MeHg含量变化一致.完熟期THg在水稻中植株的分布状况为:根籽粒茎叶穗壳,MeHg的分布为:籽粒根茎叶穗壳.水稻植株中MeHg/THg均值为24.03%,大于土壤均值3.05%,说明水稻植株中具有较强的MeHg累积能力.在水稻生长周期内,水稻体内MeHg富集系数均值为8.16,远大于THg富集系数的均值2.31,且籽粒中的MeHg富集系数大于根、茎、叶,说明水稻对MeHg的富集能力强于THg,且籽粒更易于富集MeHg.水稻体内的MeHg的转移系数大于THg,且籽粒中MeHg的转移系数大于1,进一步说明MeHg比THg更易在水稻体内转移.  相似文献   

3.
通过盆栽试验探讨了盐渍化环境下秸秆还田对土壤中总汞(THg)、甲基汞(MeHg)含量和转化以及对水稻吸收汞的影响.试验用土采集自天津典型污灌地区,人为添加不同梯度的盐分(0、0.2%、0.5% NaCl)及外源汞(0、5mg/kg~Hg(NO32),秸秆还田按照0.1%进行处理.结果显示:1.秸秆还田促进稻田系统中无机汞的甲基化.与未添加秸秆的处理相比,秸秆还田后土壤MeHg含量提高了56.8%~76.8%,水稻MeHg含量增加了127%~171.6%.2.在轻度盐渍化稻田开展秸秆还田,会进一步提高稻田土壤中汞的甲基化水平,进而增加水稻籽粒中甲基汞含量.与不添加盐分处理相比,轻度盐渍化环境中(0.2% NaCl),秸秆还田处理导致土壤MeHg含量提高了92.2%~101.2%,水稻籽粒MeHg含量增长了52.8%~132.1%.更高的盐渍化水平会抑制土壤汞甲基化趋势,水稻籽粒中甲基汞含量降低.在中度盐渍化环境中(0.5% NaCl),秸秆还田导致土壤MeHg含量降低了57.9%~88.6%,水稻籽粒MeHg含量降低了72.9%~86.8%.以上研究结果表明,在盐渍化且汞污染稻田开展秸秆还田可能大幅度增加该地区汞食物链暴露风险,因此在中轻度盐渍化的污灌区,对秸秆还田等农艺措施需要格外慎重.  相似文献   

4.
鉴于流域尺度内水稻植株不同组织中总汞和甲基汞含量及人群进食稻米的汞暴露风险研究较少,系统采集了贵州省铜仁市受万山废弃汞矿影响的瓦屋河流域内水稻植株及对应根际土壤样品,分析水稻植株不同组织中的w(总汞)、w(甲基汞)及其影响因素,以及流域内人群食用稻米的汞暴露风险.结果表明:瓦屋河流域水稻精米中w(总汞)平均值为(14.2±7.0)μg/kg(范围为4.1~34.0 μg/kg,n=24),精米中w(甲基汞)平均值为(7.229±3.957)μg/kg(范围为1.974~17.364 μg/kg,n=24).精米中w(总汞)与水稻茎、叶中w(总汞)均呈较显著正相关(R=0.531,P<0.01;R=0.499,P<0.05),精米中w(甲基汞)与水稻根、茎中w(甲基汞)也均呈显著正相关(R=0.525,P<0.01;R=0.612,P<0.01);w(总汞)、w(甲基汞)均与土壤理化参数存在一定正相关关系,并均与距污染源距离呈负相关.根据精米中w(甲基汞)平均值,并按照US EPA(美国国家环境保护局)推荐的甲基汞日暴露量(ID)和危害指数(HI)的评估方法计算的瓦屋河流域居民甲基汞日暴露量为(0.075±0.041)μg/(kg·d),低于较为严厉的US EPA推荐的甲基汞日安全摄入量(RfD),危害指数为0.75.从平均状况来看,人体摄入该地区生产的精米相对较为安全.   相似文献   

5.
研究发现稻米易富集甲基汞(MeHg),汞污染区稻米的食用也是人体MeHg暴露的一个重要途径.因此,如何抑制MeHg在稻田中的生成及其在稻米中的富集,是亟需解决的重要问题.为此,本文采用盆栽试验,通过对间隙水、土壤及水稻植株各组织汞含量的分析,探讨了添加壳聚糖改性生物炭对水稻生长期土壤MeHg生成及籽粒MeHg富集的影响.结果表明,添加壳聚糖改性生物炭后能明显降低土壤及间歇水中的总汞(THg)及MeHg含量,与对照相比,土壤中汞的甲基化率降低了51.1%~79.1%;水稻成熟时,添加壳聚糖改性生物炭处理(CMBC)水稻根部MeHg含量比未添加生物炭处理(CK1)低73.1%,比添加未改性生物炭处理(CK2)低62.0%;稻米MeHg含量比CK1低75.8%,比CK2低72.9%;添加生物炭能促进水稻生长,CMBC和CK2处理的植株生物量分别是CK1的1.6倍和1.7倍.盆栽模拟试验结果表明,壳聚糖改性生物炭在促进水稻生长的同时,可以抑制MeHg在稻米中的富集,有一定的推广应用价值.  相似文献   

6.
万山汞矿区稻田土壤甲基汞的分布特征及其影响因素分析   总被引:2,自引:0,他引:2  
运用等温气相色谱冷原子荧光技术(GC-CVAFS)对贵州万山汞矿区主要河流范围内稻田土壤甲基汞(MeHg)等含量进行了测定,并从区域层面对土壤甲基汞(MeHg)的分布特征及影响因素进行了研究。结果表明:万山汞矿区稻田土壤MeHg和总汞(THg)含量范围分别为0.72~6.70ng/g和0.49~188.00μg/g,甲基化率范围为0.002%~0.470%;在水平空间分布上,6个检测区域的土壤MeHg含量均随着远离汞矿核心区而降低,但是不同区域之间的降低变化程度不尽相同。通过对稻田土壤SiO2、Al2O3、Fe2O3、TS、TP、TN、有机质、pH等土壤性质与土壤MeHg以及甲基化率进行相关性分析发现,MeHg与THg、TS、TP、TN、有机质存在显著的正相关关系,与SiO2表现出显著性负相关,表明土壤甲基汞不但和总汞含量有关,还受到土壤其它理化因子,尤其是一些营养因子所控制。  相似文献   

7.
污灌区稻田汞污染特征及健康风险评价   总被引:7,自引:0,他引:7  
选择天津北排污河灌区作为研究区域,调查了土壤和水稻总汞和甲基汞的含量及分布特征,评估污灌区稻米食用汞暴露风险,并对污灌区土壤-稻米甲基汞的影响因素进行了初步分析.结果表明,1.调查的29个污灌区稻田,土壤总汞含量为(367.04 ± 129.36) μg/kg,显著高于区域土壤Hg背景值73 μg/kg,甲基汞含量为(0.87 ± 0.77) μg/kg;水稻各部位总汞含量依次为稻叶 > 稻根 > 稻茎 > 稻米,稻米总汞含量为(12.80 ± 5.14) μg/kg,甲基汞含量依次为稻米 > 稻根 > 稻茎 > 稻叶,稻米对甲基汞具有很强的富集能力,甲基汞含量为(2.09 ± 1.20) μg/kg,甲基化率均值超过10%.污灌区稻米总汞每周摄入量为0.068~1.25μg/(kg·bw),甲基汞每周摄入量为0.0095~0.49μg/(kg·bw),污灌区稻米总汞及甲基汞暴露对居民健康风险总体仍在安全阈值内,但个别汞污染较严重地块甲基汞暴露风险值得高度关注.土壤甲基汞含量仅与土壤总汞含量及黏粒含量的相关性达到显著性水平,稻米甲基汞含量与土壤总汞含量、土壤甲基汞含量、稻米总汞含量及黏粒含量的相关性达到显著性水平.  相似文献   

8.
贵州省燃煤中汞含量较高,在贵州省农村分散式燃煤的使用是个普遍现象。为了解煤在分散式燃烧过程中造成的汞排放及其对周边环境的影响,本研究选取江南煤都贵州省具有代表性的高汞含量煤产区,黔西南州兴仁市厂头村为研究区,对农户所用煤和燃烧过程中的炉渣、烟气以及周边农用地表层土壤样品中的汞含量进行了分析,同时监测了当地农户室内和室外空气汞浓度变化。结果表明,研究区农户煤中汞含量为0. 34±0. 18 mg/kg,炉渣中汞含量为0. 13±0. 10 mg/kg,烟气中汞含量为23±16μg/m~3。研究区的土壤中总汞(THg)和甲基汞(MeHg)的含量分别为0. 37±0. 08 mg/kg和0. 64±0. 35μg/kg,THg与MeHg之间呈显著正相关(r=0. 375,P0. 05)。土壤总汞浓度低于土壤环境质量标准总汞风险筛选值。地累积指数法风险评价结果显示,研究区土壤总汞和甲基汞污染指数分别为0. 18±0. 33和0. 15±0. 79,存在一定的汞污染风险。  相似文献   

9.
三峡库区消落带农业活动对土壤汞变化的影响   总被引:2,自引:2,他引:0  
针对三峡库区消落带退水期农业生产是否会对库区环境带来不利影响的问题,以分布面积较大、农业活动较为频繁的重庆市开州区渠口镇消落带为研究区域,选择种植水稻、玉米、蔬菜和未农用的草地4类消落带地块为研究对象,调查了不同利用地块表层土壤汞(Hg)的变化特征.结果表明,研究区域内土壤THg、有效态Hg(Hg-wh)和甲基汞(MeHg)平均含量分别为25.80~68.74、0.44~0.88和0.08~0.85 ng·g-1.未耕作土地表层土壤THg、Hg-wh和MeHg含量均高于耕作土地表层土壤,说明耕作扰动能够加速土壤Hg的流失.未耕作土壤与耕作土地表层土壤MeHg含量随着落干时长的增加均呈现先升高后降低的趋势,峰值大约出现在落干后1~2个月内,约为淹水末期的4倍,之后逐渐降低至相对稳定的水平.MeHg占THg比例(%MeHg)也呈现类似规律,峰值出现在落干后1个月左右,降到稳定水平时与淹水末期含量无显著性差异(P0.05).土壤%MeHg与Hg-wh含量呈显著性正相关关系(r=0.642,P0.01),而与THg含量没有显著相关性(P0.05),说明消落带土壤Hg甲基化主要受生物可利用性Hg形态的影响.  相似文献   

10.
汪恒  袁权 《地球与环境》2022,50(5):767-775
甲基汞(MeHg)是一种具有神经毒性的环境污染物。稻田土壤中在微生物作用下由无机汞转化产生的甲基汞,经水稻根系吸收后最终会富集于稻米中,由此造成人体的甲基汞暴露风险。水稻根际土壤在此过程中可能扮演着至关重要的作用。受水稻根系分泌的有机碳及氧气等的影响,根际土壤被视为稻田环境中的特殊生境,其间的微生物群落结构与丰度以及若干关键元素的循环过程与非根际土壤相比存在巨大差异。这一特殊生境会对无机汞(IHg)以及甲基汞在稻田环境中的命运产生重要影响。本文首先简要综述了稻田土壤环境中甲基汞产生与降解的微生物学过程研究进展,并进一步着重分析了水稻根际土壤中Fe、S、C、N和P等关键元素对汞的微生物循环过程的影响。深刻认识这些过程,有助于研究者准确评估汞污染区稻田土壤甲基汞的产生及向水稻体内的转移效率,这对未来选择适当的农业手段降低人体甲基汞暴露风险具有重要意义。文章最后提出了若干值得探索的研究方向,期望能为相关研究提供新思考。  相似文献   

11.
微生物在汞的甲基化过程中起着关键作用,但关于野外微生物活动对甲基汞分布的影响研究较为缺乏.通过对贵阳市不同污染类型水库中硫酸盐还原菌(SRB)、铁还原菌(DIRB)、甲基汞(MeHg)及相应水质参数分布规律研究,探讨了水库中SRB和DIRB活动在汞甲基化及其分布中所起的作用.在水库上覆水体中,SRB与甲基汞呈显著正相关关系(r=0.398,p0.015,n=37),表明在上覆水体中,SRB为主要的汞甲基化细菌.在污染严重且差异明显的沉积物中,两种微生物对甲基汞分布的影响各不相同.在受矿山酸性废水污染的阿哈水库,由于其过高的SRB含量及其硫酸盐还原活动,导致夏季沉积物表层硫离子大量积累,严重抑制了汞的甲基化过程,使得沉积物孔隙水表层甲基汞明显低于其它两个水库,也低于阿哈水库上覆水体甲基汞含量.在红枫水库,沉积物表层适宜的SRB活动促进了汞的甲基化,硫酸盐还原物硫离子和孔隙水甲基汞存在显著相关性(r=0.674,p0.001,n=31);在百花水库,由于沉积物曾受到严重汞污染,甲基汞峰值主要受到沉积物总汞的影响,和两种微生物活动及其产物均未表现出显著相关性.  相似文献   

12.
Biochar has been used increasingly as a soil additive to control mercury (Hg) pollution in paddy rice fields. As the most active component of soil organic matter, soil dissolved organic matter (DOM) plays a vital role in the environmental fate of contaminants. However, there are very few studies to determine the impact of biochar on the Hg cycle in rice paddies using insights from DOM. This study used original and modified biochar to investigate their effect on DOM dynamics and their potential impact on methylmercury (MeHg) production and bioaccumulation in rice plants. Porewater DOM was collected to analyze the variations in soil-derived DOM in paddy soils. The results showed that the addition of biochar, whether in original or modified form, significantly reduced the bioaccumulation of MeHg in rice plants, especially in hulls and grains (p<0.05). However, MeHg production in soils was only inhibited by the modified biochar. Biochar addition induced a significant increase in DOM's aromaticity and molecular weight (p<0.05), which decreased Hg bioavailability. Furthermore, enhanced microbial activity was also observed in DOM (p<0.05), further increasing MeHg production in the soil. Thus, the effect of biochar on the fate of Hg cycle involves competition between the two different roles of DOM. This study identified a specific mechanism by which biochar affects Hg behavior in rice paddy soil and contributes to understanding the more general influence of biochar in agriculture and contaminant remediation.  相似文献   

13.
根际环境特殊的理化性质可能显著促进汞(Hg)的甲基化.为证实上述假设,本研究采集了三峡库区消落带狗牙根根际土和非根际土,分别测定了根际土与非根际土中总汞(THg)和甲基汞(MeHg)含量及主要理化性质,并采用双同位素示踪法(~(199)Hg~(2+)和Me~(201)Hg)进行室内模拟培养实验,探究其Hg的甲基化与去甲基化速率.结果表明,根际土壤中的Fe~(2+)、Mn~(2+)、有机质含量、过氧化氢酶活性显著高于非根际土(p0.05),MeHg含量、细菌、真菌数极显著大于非根际土(p0.01);根际土壤中MeHg的含量与Mn~(2+)、SO_4~(2-)、有机质含量存在显著正相关性(p0.05),与过氧化氢酶活性、细菌、真菌数存在显著正相关性(p0.01);根际土壤中Hg甲基化、去甲基化速率、净甲基化潜力均显著大于非根际土(p0.05),有菌根际土的甲基化与去甲基化速率显著大于无菌根际土(p0.05).本研究证实了根际是Hg发生甲基化的一个活跃区域,其中,微生物在根际土壤中Hg的甲基化与去甲基化过程中均起着主要作用.  相似文献   

14.
As a global pollutant, high levels of mercury (Hg) have been found in remote ecosystem due to the long range atmospheric transport. In this study, a total of 60 fish samples were collected from four rivers across the Tibetan Plateau to study the accumulation of Hg in remote and high-altitude aquatic environment. The total Hg (THg) and methylmercury (MeHg) in fish muscles ranged from 11 to 2097 ng/g dry weight (dw) (average: 819 ng/g dw) and from 14 to 1960 ng/g dw (average: 756 ng/g dw), respectively. Significantly positive linear relationships were observed between the THg (r = 0.591, p < 0.01, n = 36) and MeHg concentrations (r = 0.473, p < 0.01, n = 36) with the trophic level of fish from Lhasa River, suggesting trophic transfer and biomagnification of Hg in this aquatic ecosystem. Moreover, the THg levels in fish had significantly positive correlations with the length (r = 0.316, p < 0.05, n = 60) and weight (r = 0.271, p < 0.05, n = 60) of fish. The high levels of Hg were attributed to the slow growth and long lifespan of the fish under this sterile and cold environment. Risk assessment revealed that the consumption of Oxygymnocypris stewartii, Schizothorax macropogon, Schizothorax waltoni, Schizopygopsis younghusbandi and Schizothorax o'connori would lead to a high exposure to MeHg.  相似文献   

15.
The levels and distribution of mercury (Hg) species, including total mercury (THg) and methylmercury (MeHg) in the topsoil and dust collected from twenty sampling stations located in di erent land function areas of Xiamen, China, were investigated. The THg concentrations in topsoil ranged from 0.071 to 1.2 mg/kg, and in dust ranged from of 0.034 to 1.4 mg/kg. For stations where the THg of dust was less than 0.31 mg/kg, THg concentrations in the topsoil were significantly correlated to those in the corresponding dust (r = 0.597, n = 16, P = 0.014). The MeHg concentrations in topsoil were varied between 0.14 and 5.7 g/kg. The ratios of MeHg/THg in the topsoil ranged from 0.069% to 0.74%. The range of MeHg concentration in the dust were 0.092–2.3 g/kg. The ratios of MeHg/THg in the dust were at the same level as those in the topsoil. The MeHg concentrations in both topsoil and dust were linked to corresponding THg concentrations and soil organic matter. Neither THg nor MeHg concentration in the topsoil and dust was obviously linked to the land function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号