首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
建立了一个基于支持向量机的理论模型,用于预测二元部分互溶混合液体的闪点.根据所研究混合液体的物理性质,选择了纯物质的黏度、表面张力、配比、燃烧下限等物理参数来表征闪点,以这些参数作为输入参数,二元部分互溶液体的闪点作为输出值,应用支持向量机方法对两者之间的内在定量关系进行模拟.结果表明,闪点预测值与实验值符合良好.为工...  相似文献   

2.
建立了一个基于人工神经网络的理论模型,用于预测二元混合液体的闪点.根据所研究混合液体的物理性质,选择了相关黏度、表面张力等物理参数来表征闪点,以这些参数作为输入参数,二元混合液体的闪点作为输出值,应用反向传播(BP)人工神经网络方法对两者之间的内在定量关系进行模拟.结果表明,闪点预测值与实验值符合良好,优于传统的计算方...  相似文献   

3.
以混合溶液纯组分易燃液体闪点的饱和蒸气压为基础,应用乌拉尔定律、双液系的气-液相平衡理论,运用Le Chatelier方程和安托因方程导出二元混合液的闪点计算方法。并例举易燃液体与易燃液体组成的理想混合液、易燃液体与易燃液体组成的非理想混合液、易燃液体与不燃液体组成的非理想混合液的计算过程。乙醇溶液闪点的计算结果与现有的文献资料比较,误差在允许范围内。计算数据用Excel处理,快捷准确,用于确定二元混合液体的火灾危险性。  相似文献   

4.
利用闭口闪点测定仪、开口闪点测定仪对不同情况下组成的多组分可燃液体的闪点进行了实验研究,并对闪点测试准确性的影响因素进行了探讨,总结出部分可燃液体混合物闪点的变化规律及测试准确度的影响因素。研究发现:①完全互溶的混合物,其闪点靠近闪点低的物质的闪点;随着闪点低的物质含量的增加,闪点降低;②含有水的混合物,闪点随不燃液体含量的增加而升高;③样品量、点火次数、加热速率等对闪点测试值均有一定的影响。该研究结论为可燃液体混合物的闪点预测与安全储运提供重要依据。  相似文献   

5.
为提高脂肪醇化合物闪点预测精度,提出基于定量结构-性质关系(QSPR)原理的脂肪醇化合物闪点预测方法。应用Dragon软件计算出91种脂肪醇的分子描述符,利用遗传函数算法(GFA)从1 481个描述符中筛选出3个与脂肪醇闪点关系最密切的分子描述符。分别用多元线性回归(MLR)方法和支持向量机(SVM)方法进行建模,并采用内部验证和外部检验的方式对模型的拟合度、预测性等性能进行验证。结果表明:预测集的MLR方法和SVM方法的平均绝对误差(AAE)分别为2.870 K和2.706 K;均方根误差(RMSE)为3.451 K和3.371 K。SVM模型在精度上略优于MLR模型,而MLR模型更为简单和方便。  相似文献   

6.
为了采用非实验的方法对安全物质学的研究内容及研究方法进行初探,基于定量结构-性质关系法,选择13种与有机过氧化物热危险性的影响因子密切相关的描述符,分别对起始分解温度T0和分解热△H的实验数据进行多元线性回归、偏最小二乘和支持向量机回归分析,从而获得3种相应的预测模型。对比T0与△H的实验值和预测值,结果发现:SVM预测模型的精度高于PLS预测模型,MLR预测模型的精度最低;同种预测模型对分解热的预测结果均优于起始分解温度。此外,分析各预测模型的稳定性数据发现:MLR模型的预测过程发生了过拟合现象,不具备预测能力;PLS模型的交互验证系数均大于0.5,具备较稳定的预测能力;SVM模型的交互验证系数均大于0.9,具备非常稳定的预测能力。  相似文献   

7.
基于定量结构一性质相关性(QSPR)原理,研究了烃类及其衍生物闪点、沸点与其分子结构间的内在定量关系。应用CODESSA软件计算384种烃类及其衍生物的分子结构描述符,建立了闪点和沸点的QSPR模型。用最佳多元线性回归(B.MLR)方法筛选得到的分子描述符建立了线性回归模型。用B-MLR方法所选择的5个描述符作为支持向量机(SVM)的输入建立了非线性模型。所有的化合物被分为训练集和测试集,对每个模型的训练集和测试集的复相关系数、交互验证系数、均方根误差等进行了计算,并用测试集对模型的预测能力进行检验,预测结果表明:预测值与实验值均符合良好,所建立的闪点模型稳健,泛化能力强,预测误差小,预测的效果令人满意,但沸点的模型预测效果有待加强。相比烃类物质的模型,加了衍生物的模型性能均有所下降。  相似文献   

8.
为合理评价库岸涉水滑坡危险性,基于层次分析法与模糊理论,构建滑坡危险性现状评价模型,并利用优化支持向量机构建滑坡变形预测模型,通过对比分析实现滑坡危险性综合判断.结果表明:大柿树滑坡危险性现状为69.78分,风险等级为Ⅲ级,属高度危险;通过危险性预测评价,滑坡变形呈持续增加趋势,将趋于不利方向发展;综合滑坡危险性现状分...  相似文献   

9.
自燃温度(Auto-Ignition Temperature, AIT)是防火防爆安全设计的关键临界参数之一。为解决目前多数采用试验方法测量混合物AIT费时费力且有一定危险性的问题,运用定量结构-性质关系方法,使用反向传播神经网络(Back Propagation Neural Network, BPNN)和一维卷积神经网络(one-Dimensional Convolutional Neural Network, 1DCNN)技术建立二元混合液体AIT预测模型。以二元混合液体的分子描述符为输入、试验测得的AIT为输出,经多种方法对模型的拟合性、稳定性和预测能力评价验证。结果表明,BPNN模型和1DCNN模型均有良好的预测能力,其均方根误差分别为4.780℃和9.603℃,拟合度与5折交叉验证拟合度差值分别为0.058和0.040,表明BPNN模型有更好的拟合能力,1DCNN模型有良好的稳定性。  相似文献   

10.
模糊支持向量机(FSVM)综合了模糊理论和支持向量机(SVM)的学习理论,不仅继承了SVM在小样本情况下所具有的较强识别能力的特点,并且比SVM拥有更好的学习能力。在FSVM算法中,每个样本被赋予一个隶属度值,使得构造目标函数时不同的样本有不同的贡献,达到最大限度的消除噪声或者孤立点的效果。运用了灰色关联分析(GRA)对煤与瓦斯突出指标进行提取,引入了一个合适的模糊隶属度函数,并在此基础上提出了基于FSVM的煤与瓦斯突出预测的模型,通过实际数据的验证和其他预测方法的对比,证明了FSVM模型能够满足煤与瓦斯突出预测的要求。最后,将FSVM和传统SVM对同一组数据进行训练,证明了FSVM相比较传统SVM拥有更高的精确度。  相似文献   

11.
Managing the oil and gas pipelines against corrosion is one of the major challenges of the oil and gas sector because of the complexities associated with the initiation, stabilization, and growth of the corrosion defects. The present research attempts to develop a model for predicting the maximum depth of pitting corrosion in oil and gas pipelines using SVM algorithm. In order to improve the SVM performance, Hybrid PSO and GA was utilized. Monte Carlo simulation was used to determine the time lapse for the pit depth growth. In order to implement the above modeling approaches and to prove their efficiency and accuracy against a large database, a total of 340 data samples for corrosion depth and rate are retrieved from the Iranian Oilfields. The performance of the new algorithm shows that it has higher stability and accuracy. In addition, the forecasting results of the new algorithm are compared with the 11 intelligent optimization algorithms, it shows that the novel hybrid algorithm has higher accuracy, better generalization ability, and stronger robustness. The coefficient of determination (R2) value in the testing phase for SVM-HGAPSO was estimated by 0.99. Proposed hybrid model and Monte-Carlo simulations pitting corrosion based on Poisson square wave process have been used to predict the time evolution of the mean value of the pit depth distribution for different categories of maximum pitting rates (low, moderate, high and sever). The models was validated with 4 field data for each of the pitting corrosion categories and the results agreed well. The pipelines under severe pitting corrosion rate were, more conservatively predicted by HGAPSO-SVR than those under low, moderate and high pitting corrosion rates. The results obtained demonstrate the potentials of this technique for the integrity management of corroded aged pipelines.  相似文献   

12.
王英 《环境与发展》2020,(1):159-159,161
支持向量机在对非线性复杂问题进行处理的过程中,展现出来的优势特征非常突出,本文针对雾霾天气预测中支持向量机的应用做出了进一步探究,对支持向量机的概念、支持向量机的基本思想、建立雾霾预测模型、预测试验给出了详细的分析。  相似文献   

13.
A mathematical model which may be used for predicting the flash point of binary solutions has been proposed and subsequently verified by experimentally-derived data, such data pertaining to an almost-ideal solution as also to highly non-ideal solutions. The results reveal that the model is able to precisely predict the flash point over the entire composition range of binary solutions for both ideal solutions and non-ideal solutions by way of utilizing the flash point of the individual components. The highly non-ideal solution like octane+ethanol exhibits the minimum flash-point behavior, which leads to the minimum on the flash point vs composition curve.  相似文献   

14.
烃类沸点的定量构效关系研究   总被引:1,自引:0,他引:1  
应用CODESSA软件计算296种烃类物质的分子结构描述符,分别用启发式回归(HM)和最佳多元线性回归(B-MLR)筛选计算出的所有分子描述符,并建立沸点的线性回归模型。用B-MLR方法筛选出的4个描述符作为支持向量机(SVM)的输入建立了非线性模型。预测结果表明:所建立的模型稳健,泛化能力强,预测误差小。非线性模型(R2=0.9905,RMSE=10.2295)的性能优于线性回归模型(HM:R2=0.9819,RMSE=14.0606;B-MLR:R2=0.9842,RMSE=13.1058),预测效果令人满意。  相似文献   

15.
简要介绍了含能材料的热危险性评价,进而提出了一套用于计算预测热危险性的方法,并对高能量密度化合物、有机叠氮化合物、笼形多硝基烷烃化合物进行了热危险性预测.结果表明,目前常见高能量密度化合物的热危险性均小于NG.在选取的有机叠氮化合物中叠氮乙酰的热危险性较大,对甲基叠氮苯热危险性相对较小.立方烷和金刚烷上引人硝基后,热危险性增大,并随硝基数量的增多而增大.该计算方法和预测结果对评估含能材料热危险性有一定的参考意义.  相似文献   

16.
Introduction: Crashes involving roadway objects and animals can cause severe injuries and property damages and are a major concern for the traveling public, state transportation agencies, and the automotive industry. This project involved an in-depth investigation of such crashes based on the second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study (NDS) data including detailed information and videos about 2,689 events. Methods: The research team conducted a variety of logistic regression analyses, complemented by Support Vector Machine (SVM) analyses and detailed case studies. Results: The logistic regression results indicated that driver behavior/errors, involvement of secondary tasks, roadway characteristics, lighting condition, and pavement surface condition are among the factors that contributed significantly to the occurrence and/or increased severity outcomes of crashes involving roadway objects and animals. Among these factors, improper turning movements (odds ratio = 88), avoiding animal or other vehicle (odds ratio = 38), and reaching/moving object in vehicle (odds ratio = 29) particularly increased the odds of crash occurrence. Factors such as open country roadways, sign/signal violation, unfamiliar with roadway, fatigue/drowsiness, and speeding significantly increased the severity outcomes when such crashes occurred. The sensitivity analysis of the three SVM classifiers confirmed that driver behavior/errors, critical speed, struck object type, and reaction time were major factors affecting the occurrence and severity outcomes of events involving roadway objects and animals. Practical Applications: The study provides insights on risk factors influencing safety events involving roadway objects, including their occurrence and the severity outcomes. The findings allow researchers and traffic engineers to better understand the causes of such crashes and therefore develop more effective roadway- and vehicle- based countermeasures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号