首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. M. Fowler  D. J. Booth 《Marine Biology》2012,159(12):2787-2796
The amount of artificial habitat (termed ??artificial reef??, AR) in marine systems is rapidly increasing, yet the effect of most types of AR on reef communities remains unknown. We examined the role of well-established vessel-reefs in structuring coral reef fish assemblages by comparing assemblages on 7 World War II wrecks (>65?years old) to those on interspersed coral patch reefs of comparable size in a tropical lagoon. Fish abundance, species richness, diversity and feeding guild structure on wrecks were similar to natural reefs; however, species composition differed between the two reef types (R?=?0.189?C0.341, average dissimilarity: 67.3?C68.8?%). Despite being more species-rich and diverse, fish assemblages on larger wrecks were less similar to assemblages on their adjacent natural reefs than smaller wrecks. Wrecks may also have affected fish abundance on adjacent natural reefs, with reefs adjacent to larger wrecks supporting higher abundances than reefs adjacent to smaller wrecks. Our results indicate that increases in vessel-reef habitat may not greatly affect reef fish assemblage parameters, but may affect the relative abundances of particular species.  相似文献   

2.
The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.  相似文献   

3.
U. Oren  Y. Benayahu 《Marine Biology》1997,127(3):499-505
 Coral reefs in the northern Gulf of Eilat are exposed to continuous man-made disturbances, resulting in decreased coral coverage and reduced recruitment at the Nature Reserve of Eilat. The construction of artificial reefs on sandy bottoms is a possible option to decrease diving pressure on natural reefs. In the present study we tested this hypothesis by submerging an experimental artificial reef anchored to the bottom at 18 m depth and floated vertically 3 m below water surface. The reef was composed of PVC plates, attached both vertically and horizontally along a wire. Propagules of two coral species, the stony coral Stylophora pistillata and the soft coral Dendronephthya hemprichi, were transplanted to this artificial reef. Planulae of S. pistillata were obtained during the breeding season, seeded in petri dishes in the laboratory and after 2 wk the dishes were transferred to the experimental artificial reef. Automized fragments of D. hemprichi which had previously settled on 10 × 10 cm PVC plates were transplanted onto the experimental artificial reef. The survivorship of the transplanted D. hemprichi colonies was significantly higher on the lower sides of shallower plates. Survivorship of S. pistillata colonies increased with depth when located on the vertical plates, or on the upper sides of the horizontal plates. The highest survivorship of this coral was on the vertical plates and on the upper sides of the horizontal plates, while very low survivorship was recorded on the lower sides. The results indicate that vertical artificial surfaces offer the optimal biotic and abiotic conditions for the survival of the two examined corals. The vertical plates are characterized by low sed imentation rates, low coverage of turf-algae, minimal grazing by sea urchins and absence of the competitor tunicate Didemnum sp. In addition, the vertical orientation of the experimental plates reduces shading and offers the required light intensity for zooxanthellate corals such as S. pistillata. Only a few studies to date have tried to implement artificial reefs in a coral reef environment. The results of the present study indicate the potential of enhancing recruitment of corals by transplantation of juvenile recruits onto appropriate artificial structures. Maximal survivorship of these recruits is dependent upon the structural features of the artificial reef, which should offer optimal conditions. Received: 25 May 1996 / Accepted: 15 July 1996  相似文献   

4.
P. Baelde 《Marine Biology》1990,105(1):163-173
The structures of fish assemblages in twoThalassia testudinum beds in Guadeloupe, French West Indies, one adjacent to mangroves and the other adjacent to coral reefs, were compared between January 1983 and May 1984. The aim of the study was to compare the influences of mangroves and coral reefs on the utilization of seagrass beds by fishes through examination of species composition, catch rate, size of fishes and temporal changes. The two fish assemblages were similar in terms of the number of species they had in common (nearly 44% of the total number of species collected) and the great abundance of juveniles. They both comprised species that usually inhabit other habitats, i.e., estuaries, open waters or coral reefs. Estuary-associated species (e.g. Gerreidae) were the most abundant species in the seagrass bed near the mangroves, while small pelagic species (e.g. Clupeidae) were the most abundant species in the seagrass bed near the coral reefs. The seagrass bed near the mangroves was preferentially utilized as a nursery area by small juveniles of various species (e.g. Clupeidae, Sparidae, Gerreidae, and at least one coral reef species,Ocyurus chrysurus). The abundance of these species varied frequently, suggesting successive arrivals and departures of juveniles over time. The seagrass bed near the coral reefs was characteristically utilized by fishes that are more able to avoid predation, i.e., fishes that forage over seagrass beds at night and shelter in or near the coral reefs during the day (large juveniles of coral reef species and adults of schooling pelagic species, respectively). The constant migrations of these fishes between the coral reefs and seagrass beds explained the relative stability of the structure of the fish assemblage in the seagrass bed over time. Thus, the two seagrass beds were not equivalent habitats for fishes. The distinct ecological influences of the mangroves (as a nursery for small juveniles) and coral reefs (as a shelter for larger fishes) on the nearby seagrass beds was clearly reflected by the distinct utilizations of these seagrass beds by fishes.  相似文献   

5.
Visual assessments of topographic habitat structure and benthos on coral reefs were appraised using quantitative data collected from 16 replicate surveys within each of 21 sites on Seychelles reefs. Results from visual assessments of reef benthos were similar to those obtained using techniques frequently used to assess benthic complexity and composition. Visual estimates of habitat topography were correlated with rugosity, reef height and holes of 10–70 cm diameter, whilst visual estimates of benthic composition were very similar to those obtained from line intercept transects. Visual estimates of topography correlated strongly with species richness of fish communities and explained 42% of the variation in these data. The relationship between visual estimates of topography and species richness is strongest with fish 10–30 cm total length (TL), abundance of fish within this size category also correlating positively with topographic visual assessments. Visual techniques are prone to observer bias, however with regular training they can be used to quickly provide a reliable and effective means of assessing habitat complexity and benthos on coral reefs.  相似文献   

6.
Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum‐type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat‐forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. Definición de Hábitats Críticos para Peces Arrecifales Amenazados y Endémicos Mediante un Método Multivariado  相似文献   

7.
Increased habitat diversity is often predicted to promote the diversity of animal communities because a greater variety of habitats increases the opportunities for species to specialize on different resources and coexist. Although positive correlations between the diversities of habitat and associated animals are often observed, the underlying mechanisms are only now starting to emerge, and none have been tested specifically in the marine environment. Scleractinian corals constitute the primary habitat-forming organisms on coral reefs and, as such, play an important role in structuring associated reef fish communities. Using the same field experimental design in two geographic localities differing in regional fish species composition, we tested the effects of coral species richness and composition on the diversity, abundance, and structure of the local fish community. Richness of coral species overall had a positive effect on fish species richness but had no effect on total fish abundance or evenness. At both localities, certain individual coral species supported similar levels of fish diversity and abundance as the high coral richness treatments, suggesting that particular coral species are disproportionately important in promoting high local fish diversity. Furthermore, in both localities, different microhabitats (coral species) supported very different fish communities, indicating that most reef fish species distinguish habitat at the level of coral species. Fish communities colonizing treatments of higher coral species richness represented a combination of those inhabiting the constituent coral species. These findings suggest that mechanisms underlying habitat-animal interaction in the terrestrial environment also apply to marine systems and highlight the importance of coral diversity to local fish diversity. The loss of particular key coral species is likely to have a disproportionate impact on the biodiversity of associated fish communities.  相似文献   

8.
Bonin MC  Almany GR  Jones GP 《Ecology》2011,92(7):1503-1512
Disturbance can result in the fragmentation and/or loss of suitable habitat, both of which can have important consequences for survival, species interactions, and resulting patterns of local diversity. However, effects of habitat loss and fragmentation are typically confounded during disturbance events, and previous attempts to determine their relative significance have proved ineffective. Here we experimentally manipulated live coral habitats to examine the potential independent and interactive effects of habitat loss and fragmentation on survival, abundance, and species richness of recruitment-stage, coral-associated reef fishes. Loss of 75% of live coral from experimental reefs resulted in low survival of a coral-associated damselfish and low abundance and richness of other recruits 16 weeks after habitat manipulations. In contrast, fragmentation had positive effects on damselfish survival and resulted in greater abundance and species richness of other recruits. We hypothesize that spacing of habitat through fragmentation weakens competition within and among species. Comparison of effect sizes over the course of the study period revealed that, in the first six weeks following habitat manipulations, the positive effects of fragmentation were at least four times stronger than the effects of habitat loss. This initial positive effect of fragmentation attenuated considerably after 16 weeks, whereas the negative effects of habitat loss increased in strength over time. There was little indication that the amount of habitat influenced the magnitude of the habitat fragmentation effect. Numerous studies have reported dramatic declines in coral reef fish abundance and diversity in response to disturbances that cause the loss and fragmentation of coral habitats. Our results suggest that these declines occur as a result of habitat loss, not habitat fragmentation. Positive fragmentation effects may actually buffer against the negative effects of habitat loss and contribute to the resistance of reef fish populations to declines in coral cover.  相似文献   

9.
Macroalgal fields are a feature of the shallow tropical benthos, yet their importance for coral reef fish population dynamics remains poorly understood. The abundance of fish recruits was recorded using underwater visual census at six macroalgal and 11 coral reef sites in the Montebello and Barrow Islands. Surveys identified 6,935 individual recruit fish from 105 species, 54 genera and 20 families. Of these, 1,401 recruits from 48 species, 31 genera and 14 families were observed in macroalgal sites. Sixteen of the 105 recruit species (15.2 %) were observed exclusively at macroalgal sites. Forty-two (87.5 %) of these species have been observed as adults on adjacent coral reefs. Species composition of fish recruits differed significantly between the two habitats. Corallivore, small omnivore and zooplanktivore recruits had significantly higher numbers in the coral sites, while the results clearly demonstrate that juveniles, within the genera Lethrinus and Choerodon, as well as large algal croppers, are predominantly found at macroalgal (74–100 %) rather than coral-dominated sites. High-canopy macroalgae cover was positively correlated with abundance of these taxa, particularly Lethrinids (r 2 = 0.40). This study is the first to highlight the important attributes of tropical macroalgal fields and suggests that they have a similar role to seagrass meadows as essential juvenile habitat, thus warranting greater attention in conservation planning and ecological studies.  相似文献   

10.
Gnathiid isopods are one of the most abundant groups of ectoparasites on coral reef fishes. They, and other isopods, have been shown to significantly affect the health and behaviour of many reef fish. Whether isopod emergence differs among habitats on coral reefs is not known. In this study, we measured emergence rates of parasitic isopods (Gnathiidea and Flabellifera) in six habitats at two sites at Lizard Island during new moon periods in March and December 2004. Isopods were collected from the periphery and centres of micro-reefs, patch reefs, continuous reefs, and from inter-reefal habitats (sand or rubble) with 1 m2 emergence traps. Sites (Casuarina and Coconut Beach) were located on opposite sides of Lizard Island. Live gnathiids were collected with light traps in November 2005 to investigate species differences between sites. At both sites, the most abundant gnathiid species was exclusive to that site. More gnathiid larvae emerged at night, and emergence of fed gnathiids (pranizae) and flabelliferan isopods was almost exclusively nocturnal. Diurnal emergence was greater at Coconut Beach than Casuarina Beach. Although emergence counts were not consistently affected by parameters such as habitat, site, or sampling period, gnathiid size and feeding state were. Where significant differences existed, gnathiids were larger and more often fed over reef borders than centrally. We suggest first stage larvae (Z1) have the largest influence on total abundance and are patchily distributed in accordance with adults from which they have recently hatched. As later stage larvae depend on fish, more successful (fed) and older larvae are found on the edges of reefs where appropriate hosts may be more abundant, or predation is lower. Gnathiids were over-dispersed in all habitats investigated, including apparently homogeneous beds of coral rubble and sand. This indicates that their distributions may be better predicted by very fine scale differences in substrate or that aggregations are the result of gregariousness and may be difficult to predict on the basis of substrate. Emergence traps collected comparatively few parasitic flabelliferan isopods. This community differed greatly from the previously described community of scavenging isopods at Lizard Island. These differences are probably the result of differences in trapping methodology.  相似文献   

11.
The aim of the study was to provide comparable estimates of abundance of herbivorous reef fishes at temperate and tropical localities using a standardized methodology. Faunas of herbivorous fish were sampled on the rocky reefs of temperate northern New Zealand and on the coral reefs of the northern Great Barrier Reef (GBR), Australia, and the San Blas Archipelago in the Caribbean. A pilot study established the most appropriate habitat setting and the scale and magnitude of replication for the sampling program in temperate waters. Herbivorous fishes, including members of families endemic to the southern hemisphere (Odacidae and Aplodactylidae), were most abundant in turbulent, shallow water (0 to 6 m) and had patchy distributions within this habitat. A hierarchical sampling program using 10-min transect counts within the 0 to 6 m depth stratum examined abundance patterns at a range of spatial scales including mainland and island coasts, localities separated by up to 100 km and sites separated by up to 10 km. This program identified a characteristic fauna of seven species of herbivorous fishes with mean total abundances ranging from 23 to 30 individuals per 10-min transect. Species composition of the fauna varied between islands and coasts. A similar methodology was used to sample the major families of herbivorous fish in a number of sites in each of the tropical regions. These sampling programs revealed a fauna dominated by acanthurids and scarids in both the GBR and Caribbean localities. Estimates of abundance from these regions were similar, with a mean of 108 individuals recorded on the GBR and 129 per 10-min transect in the Caribbean. Species richness varied between each region, with 44 taxa recorded from the GBR and 11 from the Caribbean. Abundances of temperate water herbivores in New Zealand were found to be 75 to 80% lower than those recorded from shallow water habitats sampled on coral reefs. This was not related to species richness, since both New Zealand and the Caribbean locality had patterns of low richness. We suggest that the differences in abundance found by our study between temperate and tropical regions are not restricted to herbivorous fishes, but are representative of general latitudinal trends in reef fish faunas. Received: 4 November 1996 / Accepted: 15 December 1996  相似文献   

12.
The relationship between densities of Achoerodus viridis (Pisces: Labridae) and reef habitats at various localities within New South Wales (NSW), Australia was examined. Types of habitats were quantified at inner, mid and outer estuarine locations in each of two estuaries (Botany Bay and Port Jackson) to determine whether purported patterns of movement from estuaries could be related to differences in habitat. Although the same types of habitat were generally found at all locations, differences in the proportion of habitat types were found between shallow and deep reefs and among inner, mid and outer estuarine locations for both estuaries. Shallow habitats were usually dominated by Ecklonia radiata, turf and/or fringe habitat in Botany Bay, whereas deep sites were generally dominated by urchin-grazed barrens habitat and, sometimes, sponge- and ascidian-dominated deep reef. Shallow sites in Port Jackson were dominated by a mixture of habitats, as were deep reefs at mid-estuarine locations. Other deep reefs in Port Jackson were dominated by E. radiata (inner estuarine) or barrens (outer estuarine) habitat. Thus, patterns of habitat cover were not consistent between estuaries and numbers of fish could not be related to proportional representation of habitat on reefs along estuarine gradients. Univariate and multivariate analyses showed that there was little evidence that any size class of fish was correlated with the proportional representation of a particular habitat or group of habitats. Counts of fish that focused on barrens and E. radiata forest habitats over a period of 10 yr showed that similar numbers and all sizes of fish were found in the two types of habitat. Greater numbers of small fish were, however, found in the E. radiata forest habitat than in the barrens habitat. Estimates of abundance along the coast of NSW (100s to 1000 km) in a range of habitats (e.g. ascidian-dominated reef, kelp forest, urchin-grazed barrens) showed that there was no indication that a particular habitat consistently had greater numbers of A. viridis than other habitats. Therefore, A. viridis of a range of sizes appears to be flexible in its use of habitats on reefs. Received: 24 December 1997 / Accepted: 23 June 1998  相似文献   

13.
Within the tropics, mangroves and coral reefs represent highly productive biomes. Although these habitats are often within close proximity, the role and importance of mangrove habitats for reef fish species remains unclear. Throughout the Indo-Pacific, reef fish species appear to have few links with estuarine mangrove habitats. In contrast, clear-water non-estuarine mangrove habitats throughout the Caribbean support many reef fish species and may be fundamental for sustaining reef fish populations. But how important are clear-water non-estuarine mangroves for reef fishes within the Indo-Pacific? Using visual surveys during diurnal high tide, the fish assemblages inhabiting clear-water mangrove and adjacent reef habitats of Orpheus Island, Great Barrier Reef, were recorded. Of the 188 species of fishes that were recorded, only 38 were observed to inhabit both habitats. Of these, only eight were observed more than five times within each habitat. These observations provide little indication that the clear-water mangroves are an important habitat for reef fish species. In addition, although based on just a 3-month survey period, we found little evidence to suggest that these areas are important nurseries for reef fish species. The clear-water mangroves of Orpheus Island may, however, provide an additional foraging area for the few reef fish species that were observed to utilize these habitats during high tide. The difference in the importance of clear-water mangroves for reef fishes within this study compared with clear-water mangrove counterparts within the Caribbean is surprising. Although only preliminary, our observations would support suggestions that the patterns reflect the different hydrological characteristics and evolutionary histories of these two biogeographic regions.  相似文献   

14.
Y. Loya 《Marine Biology》1975,29(2):177-185
The community structure and species diversity of hermatypic corals was studied during 1969–1973, in two reef flats in the northern Gulf of Eilat, Red Sea: the reef flat of the nature reserve at Eilat, which is chronically polluted by oil and minerals, and a control reef, located 5 km further south, which is free from oil pollution. In 1969, the nature reserve and the control reef had similar coral community structure. In September, 1970, both reefs suffered approximately 90% mortality of corals, as a result of an unexpected and extremely low tide. In 1973 the control reef was “blooming” with a highly diverse coral community, while almost no signs of coral recolonization have been observed at the nature reserve, and it is significantly lower in diversity. It is suggested that phosphate eutrophication and chronic oil pollution are the major man-made disturbances that interfere with coral colonization of the reef flat at the nature reserve. Although no direct evidence is provided that oil damages hermatypic corals, the data strongly suggest that chronic oil spills prevent normal settlement and/or development of coral larvae. It is possible that chronic oil, pollution results in either one or a combination of the following: (1) damage to the reproductive system of corals; (2) decreased viability of coral larvae; (3) changes in some physical properties of the reef flat which interfere with normal settlement of coral larvae.  相似文献   

15.
Over 15 000 coral recruits were counted on settlement plates from three mid-shelf reefs and six fringing reefs in the northern section of the Great Barrier Reef during two summers (1986 and 1987) and one winter (1987). The density of coral recruits on some settlement plates from a fringing reef was up to 4.88 cm–2, the highest value ever reported. Mean density of recruits was greater on fringing reefs (81.1 recruits/settlement plate) than on mid-shelf reefs (15.6 recruits/settlement plate), but there was greater spatial variation in abundance of recruits between the fringing reef sites. Other differences between the mid-shelf reefs and the fringing reefs were that different taxa were dominant, and that settlement orientation differed, with mid-shelf recruits settling preferentially on horizontally oriented surfaces and fringingreef recruits preferring vertical surfaces. Of the three midshelf reefs, Green Island reef recorded the highest recruitment rate for each of the two summers, despite having a depauperate adult coral population following predation by the asteroidAcanthaster planci. This suggests that coral larvae frequently travel between reefs. In contrast with an earlier study, there was no consistent difference in abundance of recruits between forereef and backreef locations. Overall, the results indicated great spatial variation in the availability of coral larvae, both on the scale of whole reefs and within-reef habitats.  相似文献   

16.
A simple field technique to obtain a gross estimate of the surface area of a quadrat on a coral reef is described. This measure, termed the substrate rugosity index, was determined, in conjunction with two other substrate variables (vertical relief and coral species richness), in a series of 4 quadrats (10 to 40 m depth) along 4 transects. The mean substrate rugosity and vertical relief of a quadrat were highly correlated. A correlation analysis was made of the substrate variables and several reef fish community parameters (species richness, number of fishes and diversity). Species richness was highly correlated with substrate rugosity. This relationship was tested in two experimental quadrats and the results were generally in accord with those predicted. Stratification of the fish communities by body size revealed that the correlation with substrate rugosity was scale-dependent. The fish community parameters were poorly correlated with percentage substrate cover by corals (ramose and glomerate) and by sand. A significant area effect was determined for two species of sand-dwelling goby.  相似文献   

17.
Three underwater stereo-video techniques were used to sample the relative densities and species richness of temperate reef fish assemblages at three reef locations and two habitats (high- and low-relief reef) within Hamelin Bay, south-western Australia. The three techniques compared were diver-operated stereo-video strip transects, baited remote stereo-video and unbaited remote stereo-video. While unbaited remote stereo-video and diver-operated stereo-video transects recorded greater species richness at high compared to low-relief reefs, baited remote stereo-video recorded similar species richness at the two habitat types. The diver-operated stereo-video system was manoeuvred through caves and under overhangs recording small, cryptic, cave-dwelling species that were not recorded by either remote video techniques (Trachinops noarlungae, Trachinops brauni, Chromis klunzingeri, Trachichthys australis). Both remote video techniques recorded greater species richness and relative density of the most common species of Labridae, Ophthalmolepsis lineolatus. Baited remote video recorded the rarer, large predatory fish species (e.g. Seriola hippos, Glaucosoma hebraicum, Heterodontus portusjacksoni). None of the techniques sampled small cryptic fish families such as Gobiidae or Blenniidae. A combination of survey techniques is recommended for comprehensive fishery-independent studies that aim to sample broad components of fish assemblages.An erratum to this article can be found at  相似文献   

18.
Plankton samples were taken from January to June 1987 in Kaneohe Bay, Oahu, Hawaiian Islands, with a free-fall plankton net, to investigate the fine-scale distribution of larval fishes around coral reefs. Daytime samples indicated that the postflexion larvae of two gobiids (Psilogobius mainlandi and an unidentified species) were significantly more abundant at stations immediately adjacent to reefs (near-reef) than at stations in open water off the reef (off-reef). These postflexion gobiid larvae appeared to be capable of resisting advection and dispersal while remaining in the water column near suitable adult habitats. The larvae of Foa brachygramma (Apogonidae) and Encrasicholina purpurea (Engraulidae) were significantly more abundant at off-reef stations than at near-reef stations. Nighttime samples indicated that the gobiid larvae depend on visual cues to remain near the reef. The horizontal distributions of F. brachygramma and E. purpurea larvae appeared to be related to their vertical positioning. These data suggest that typical ichthyoplankton surveys which do not sample close to adult fish habitats would greatly underestimate the abundances of larvae such as the gobiids.  相似文献   

19.
Overholtzer-McLeod KL 《Ecology》2006,87(4):1017-1026
The spatial configuration of habitat patches can profoundly affect a number of ecological interactions, including those between predators and prey. I examined the effects of reef spacing on predator-prey interactions within coral-reef fish assemblages in the Bahamas. Using manipulative field experiments, I determined that reef spacing influences whether and how density-dependent predation occurs. Mortality rates of juveniles of two ecologically dissimilar species (beaugregory damselfish and yellowhead wrasse) were similarly affected by reef spacing; for both species, mortality was density dependent on reef patches that were spatially isolated (separated by 50 m), and density independent on reef patches that were aggregated (separated by 5 m). A subsequent experiment with the damselfish demonstrated that a common resident predator (coney) caused a substantial proportion of the observed mortality, independent of reef spacing. Compared to isolated reefs, aggregated reefs were much more likely to be visited by transient predators (mostly yellowtail snappers), regardless of prey density, and on these reefs, mortality rates approached 100% for both prey species. Transient predators exhibited neither an aggregative response nor a type 3 functional response, and consequently were not the source of density dependence observed on the isolated reefs. These patterns suggest that resident predators caused density-dependent mortality in their prey through type 3 functional responses on all reefs, but on aggregated reefs, this density dependence was overwhelmed by high, density-independent mortality caused by transient predators. Thus, the spatial configuration of reef habitat affected both the magnitude of total predation and the existence of density-dependent mortality. The combined effects of the increasing fragmentation of coral reef habitats at numerous scales and global declines in predatory fish may have important consequences for the regulation of resident fish populations.  相似文献   

20.
The removal of fish biomass by extensive commercial and recreational fishing has been hypothesized to drastically alter the strength of trophic linkages among adjacent habitats. We evaluated the effects of removing predatory fishes on trophic transfers between coral reefs and adjacent seagrass meadows by comparing fish community structure, grazing intensity, and invertebrate predation potential in predator-rich no-take sites and nearby predator-poor fished sites in the Florida Keys (USA). Exploited fishes were more abundant at the no-take sites than at the fished sites. Most of the exploited fishes were either omnivores or invertivores. More piscivores were recorded at no-take sites, but most (approximately 95%) were moderately fished and unexploited species (barracuda and bar jacks, respectively). Impacts of these consumers on lower trophic levels were modest. Herbivorous and smaller prey fish (< 10 cm total length) densities and seagrass grazing diminished with distance from reefs and were not negatively impacted by the elevated densities of exploited fishes at no-take sites. Predation by reef fishes on most tethered invertebrates was high, but exploited species impacts varied with prey type. The results of the study show that, even though abundances of reef-associated fishes have been reduced at fished sites, there is little evidence that this has produced cascading trophic effects or interrupted cross-habitat energy exchanges between coral reefs and seagrasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号