首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
Land use changes and associated hydrologic disturbances, mainly caused by human activities, is a common reason for wetlands degradation worldwide. The particular scientific effort utilized remotely sensed data, GIS techniques and hydrologic modeling to estimate land use alterations during a 40-years period as well as associated changes in hydrologic parameters such as overland and underground flow, infiltration, evapotranspiration and water storages on ground surface. The results indicated significant variations in the hydrologic regime including a 6% increase in the annual evapotranspiration and a 10% increase in the soil water deficit that impose substantial impacts on the regional wetlands.  相似文献   

2.
Temporal and spatial variability in wetland water-quality variables were examined for twenty-one wetlands in the Minneapolis/St. Paul metropolitan area and eighteen wetlands in adjacent Wright County. Wetland water quality was significantly affected by contact with the sediment (surface water vs. groundwater), season, degree of hydrologic isolation, wetland class, and predominant land-use in the surrounding watershed (p<0.05). Between years, only nitrate and particulate nitrogen concentrations varied significantly in Wright County wetland surface waters. For eight water-quality variables, the power of a paired before-and-after comparison design was greater than the power of a completely randomized design. The reverse was true for four other water-quality variables. The power of statistical tests for different classes of water-quality variables could be ranked according to the predominant factors influencing these: climate factors>edaphic factors>detritivory>land-use factors>biotic-redox or other multiple factors.For two wetlands sampled intensively, soluble reactive phosphate and total dissolved phosphorus were the most spatially variable (c.v.=76–249%), while temperature, color, dissolved organic carbon, and DO were least variable (c.v.=6–43%). Geostatistical analyses demonstrated that the average distance across which water-quality variables were spatially correlated (variogram range) was 61–112% of the mean radius of each wetland. Within the shallower of the two wetlands, nitrogen speciation was explained as a function of dissolved oxygen, while deeper marsh water-quality variables were explained as a function of water depth or distance from the wetland edge. Compositing water-quality samples produced unbiased estimates of individual sample means for all water quality variables examined except for ammonium.  相似文献   

3.
Ramsar Convention and EU Water Framework Directive are two international agreements focused on the conservation and achievement of good ecological and chemical status of wetlands. Wetlands are important ecosystems holding many plant and animal communities. Their environmental status can be characterised by the quality of their water bodies. Water quality can be assessed from biophysical parameters (such as Chlorophyll-a concentration ([Chla]), water surface temperature and transparency) in the deeper or lacustrine zone, or from bioindicators (as submerged aquatic vegetation) in the shallow or palustrine zone. This paper proves the use of Landsat time series to measure the evolution of water quality parameters and the environmental dynamics of a small water body (6.57 ha) in a Ramsar wetland (Arreo Lake in the North of Spain). Our results show that Landsat TM images can be used to describe periodic behaviours such as the water surface temperature or the phenologic state of the submerged vegetation (through normalized difference vegetation index, NDVI) and thus detect anomalous events. We also show how [Chla] and transparency can be measured in the lacustrine zone using Landsat TM images and an algorithm adjusted for mesotrophic Spanish lakes, and the resulting values vary in time in accordance with field measurements (although these were not synchronous with the images). The availability of this algorithm also highlights anomalies in the field data series that are found to be related with the concentration of suspended matter. All this potential of Landsat imagery to monitor small water bodies in wetlands can be used for hindcasting of past evolution of these wetlands (dating back to 1970s) and will be also useful in the future thanks to the Landsat continuity mission and the Operational Land Imager.  相似文献   

4.
Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in “biological integrity.” These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland’s position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1–5 metrics that varied in their sensitivity to the disturbance gradient (R 2?=?0.14???0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.  相似文献   

5.
Considerable resources are being used to develop and implement bioassessment methods for wetlands to ensure that “biological integrity” is maintained under the United States Clean Water Act. Previous research has demonstrated that avian composition is susceptible to human impairments at multiple spatial scales. Using a site-specific disturbance gradient, we built avian wetland indices of biological integrity (AW-IBI) specific to two wetland classification schemes, one based on vegetative structure and the other based on the wetland’s position in the landscape and sources of water. The resulting class-specific AW-IBI was comprised of one to four metrics that varied in their sensitivity to the disturbance gradient. Some of these metrics were specific to only one of the classification schemes, whereas others could discriminate varying levels of disturbance regardless of classification scheme. Overall, all of the derived biological indices specific to the vegetative structure-based classes of wetlands had a significant relation with the disturbance gradient; however, the biological index derived for floodplain wetlands exhibited a more consistent response to a local disturbance gradient. We suspect that the consistency of this response is due to the inherent nature of the connectivity of available habitat in floodplain wetlands.  相似文献   

6.
A forested mountainous basin, the Sameura basin, located in Shikoku Island of Japan, experienced increased forest growth in the period from 1953 to 1994, like which occurred across the country. The impact of the forest growth on streamflow of the basin was assessed using statistical trend analysis. Annual maximum daily flow, annual minimum 5-day flow, and annual total runoff decreased by 55.8, 75.8, and 39.6%, respectively, over the period. However, the annual maximum 6-day, annual minimum 41-day, and annual total precipitation, respectively associated with annual maximum daily flow, annual minimum 5-day streamflow, and annual total runoff did not decrease. Annual and monthly temperature, which evapotranspiration positively related to, did not increase except in January. This demonstrates that the forest growth is responsible for the decrease in all these three flow regimes. The increase in evapotranspiration due to the forest growth resulted in the decrease in both total runoff and low flow. Thus, it seems that forest can hardly function to both reduce flood peaks during flood periods and increase water supply during drought periods.  相似文献   

7.
Negligence to consider the spatial variability of rainfall could result in serious errors in model outputs. The objective of this study was to examine the uncertainty of both runoff and pollutant transport predictions due to the input errors of rainfall. This study used synthetic data to represent the “true” rainfall pattern, instead of interpolated precipitation. It was conducted on a synthetic case area having a total area of 20 km2 with ten subbasins. Each subbasin has one rainfall gauge with synthetic precipitation records. Six rainfall storms with varied spatial distribution were generated. The average rainfall was obtained from all of the ten gauges by the arithmetic average method. The input errors of rainfall were induced by the difference between the actual rainfall pattern and estimated average rainfall. The results show that spatial variability of rainfall can cause uncertainty in modeling outputs of hydrologic, which would be transport to pollutant export predictions, when uniformity of rainfall is assumed. Since rainfall is essential information for predicting watershed responses, it is important to consider the properties of rainfall, particularly spatial rainfall variability, in the application of hydrologic and water quality models.  相似文献   

8.
Lakshadweep is a group of 36 coral islands scattered in the Arabian Sea off the western coast of India. On such small tiny islands, groundwater is the only source of fresh water for the islanders. Due to the growing population on these islands, demand for fresh water is also increasing and on the other side the peculiar hydrologic, geologic and geomorphic features restrict the availability of groundwater. Therefore, a proper understanding of the groundwater condition is important in order to meet this increasing demand and also to formulate future development and management strategies. Detailed hydrogeological, geophysical and hydrochemical studies have been carried out to identify potential fresh groundwater resources and quantify vulnerable parts of Andrott Island, Union Territory of Lakshadweep. Systematic collection and analysis of hydrological, geophysical and hydrochemical data reveal that fresh groundwater is only available between 2.5 to 5.0 m depths and provide an early sign of deterioration in groundwater quality in the peripheral parts of eastern and western coasts of this island. It suggests immediate measures for arresting the deterioration in groundwater quality as well as augmentation for restoration of aquifer in some parts of the island.  相似文献   

9.
10.
以城市副中心北运河西岸湿地(甘棠大桥段)作为典型面状海绵体,利用2018年5月—9月采集的300组地表水和地下水监测数据,分析典型海绵体地下水水化学特征及形成机制,探讨不同含水层之间水力联系,并以Cl-为指示因子,结合其他水化学指标研究分析典型面状海绵体建设背景下地下水与地表水之间的交互作用及影响程度。结果显示,在垂向上,10 m、20 m含水层地下水之间联系密切,且受大气降水影响明显;在平面上,地表水对10 m、20 m含水层组地下水的影响距离为90 m~120 m,地表水对30 m含水层组地下水的影响距离为80 m~90 m。  相似文献   

11.
The concept of time stability has been widely used in the design and assessment of monitoring networks of soil moisture, as well as in hydrological studies, because it is as a technique that allows identifying of particular locations having the property of representing mean values of soil moisture in the field. In this work, we assess the effect of time stability calculations as new information is added and how time stability calculations are affected at shorter periods, subsampled from the original time series, containing different amounts of precipitation. In doing so, we defined two experiments to explore the time stability behavior. The first experiment sequentially adds new data to the previous time series to investigate the long-term influence of new data in the results. The second experiment applies a windowing approach, taking sequential subsamples from the entire time series to investigate the influence of short-term changes associated with the precipitation in each window. Our results from an operating network (seven monitoring points equipped with four sensors each in a 2-ha blueberry field) show that as information is added to the time series, there are changes in the location of the most stable point (MSP), and that taking the moving 21-day windows, it is clear that most of the variability of soil water content changes is associated with both the amount and intensity of rainfall. The changes of the MSP over each window depend on the amount of water entering the soil and the previous state of the soil water content. For our case study, the upper strata are proxies for hourly to daily changes in soil water content, while the deeper strata are proxies for medium-range stored water. Thus, different locations and depths are representative of processes at different time scales. This situation must be taken into account when water management depends on soil water content values from fixed locations.  相似文献   

12.
In this study, we interpreted coastal wetland types from an ASTER satellite image in 2002, and then compared the results with the land-use status of coastal wetlands in 1952 to determine the wetland loss and degradation around Jiaozhou Bay. Seven types of wetland landscape were classified, namely: shallow open water, inter-tidal flats, estuarine water, brackish marshes, salt ponds, fishery ponds and ports. Several landscape pattern indices were analysed: the results indicate that the coastal wetlands have been seriously degraded. More and more natural wetlands have been transformed into artificial wetlands, which covered about 33.7% of the total wetlands in 2002. In addition, we used a defined model to assess the impacts of human activities on coastal wetlands. The results obtained show that the coastal wetlands of Jiaozhou Bay have suffered severe human disturbance. Effective coastal management and control is therefore needed to solve the issues of the coastal wetland loss and degradation existing in this area.  相似文献   

13.
This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.  相似文献   

14.
The aim of the work was to study the influence of the water taken from one of the most polluted parts of the Peter the Great Bay (the Japan Sea), the Nakhodka Bay, on the growth and chlorophyll a concentration in the cells of microalga P. tricornutum Bohlin (Bacillariophyta). The estimation of the dynamics of cell number growth and chlorophyll a concentration in the cells of microalga grown in the water from the Nakhodka Bay was made. At the same time, in 2007–2008, the main hydrochemical parameters, such as water salinity, dissolved oxygen concentration, BOD5, organic and mineral phosphates concentration, anionic surfactants, and total petroleum hydrocarbons, were determined. It is shown that in July 2007, when most hydrochemical parameters were lower than the maximum permissible level, the culture growth and chlorophyll a contents in the cells did not differ from the control for certain. In other seasons these indices differed greatly from the control. The positive correlation between the concentration of dissolved oxygen, phosphates, petroleum hydrocarbons, and the number of microalga cells, grown in the water from the Nakhodka Bay, was shown.  相似文献   

15.
A hierarchical approach for desertification assessment   总被引:1,自引:0,他引:1  
Environmental systems are complex and multi-scaled open systems. To understand land degradation, one has to consider the interactions between landscape patterns and environmental processes at different scales. Patterns and processes in the landscape are perceived to be organized in nested hierarchical structures. To study land degradation in this context, a coupled top-bottom/bottom-up approach was developed. The top-bottom landscape analysis is aimed at identifying landscape systems at different scales. The bottom-up analysis focuses on system dynamics at finer scales. Applied in a study in central Spain, the approach is aimed at understanding the functional differences between three types of degraded seminatural slopes at different scales. Six levels of organization were distinguished: ped-level, terracette-level, hummock-level, slope part-level, slope level, and watershed level. Properties that characterize these levels were selected for different disciplines. The bottom-up analysis focused on water movement at different spatial scales. Successfully applying this approach revealed the importance for land degradation of the close linkage between spatial patterns and hydrological processes at different spatial scales. Identifying constraining and dynamic indicators related to water conservation at different scales can be useful for assessing desertification.  相似文献   

16.
A simply structured, cheap hexachromium monitor was developed. The monitor is based on UV/VIS absorption technique. A 2-m long water core optical fiber was employed as a long path length sample cell and a UV light emitting diode (LED) was used as a light source. The emission profile of the UV LED fits very well with the absorption spectrum of chromate ions in water. Therefore, the light-dispersing element, which is usually used in an optical spectrometer, is not necessary in this monitor design. The water core fiber as a long path length makes the monitor highly sensitive for hexachromium detection. This monitor is specific for hexachromium detection without interference from tri-valence chromium ions. A detection limit of 0.1 ng Cr(VI) ml(-1) was obtained with this simple monitor.  相似文献   

17.
Nitrate-nitrogen concentrations in rivers represent challenges for water supplies that use surface water sources. Nitrate concentrations are often modeled using time-series approaches, but previous efforts have typically relied on monthly time steps. In this study, we developed a dynamic regression model of daily nitrate concentrations in the Raccoon River, Iowa, that incorporated contemporaneous and lags of precipitation and discharge occurring at several locations around the basin. Results suggested that 95 % of the variation in daily nitrate concentrations measured at the outlet of a large agricultural watershed can be explained by time-series patterns of precipitation and discharge occurring in the basin. Discharge was found to be a more important regression variable than precipitation in our model but both regression parameters were strongly correlated with nitrate concentrations. The time-series model was consistent with known patterns of nitrate behavior in the watershed, successfully identifying contemporaneous dilution mechanisms from higher relief and urban areas of the basin while incorporating the delayed contribution of nitrate from tile-drained regions in a lagged response. The first difference of the model errors were modeled as an AR(16) process and suggest that daily nitrate concentration changes remain temporally correlated for more than 2 weeks although temporal correlation was stronger in the first few days before tapering off. Consequently, daily nitrate concentrations are non-stationary, i.e. of strong memory. Using time-series models to reliably forecast daily nitrate concentrations in a river based on patterns of precipitation and discharge occurring in its basin may be of great interest to water suppliers.  相似文献   

18.
To explore the value of high-frequency monitoring to characterise and explain riverine nutrient concentration dynamics, total phosphorus (TP), reactive phosphorus (RP), ammonium (NH4-N) and nitrate (NO3-N) concentrations were measured hourly over a 2-year period in the Duck River, in north-western Tasmania, Australia, draining a 369-km2 mixed land use catchment area. River discharge was observed at the same location and frequency, spanning a wide range of hydrological conditions. Nutrient concentrations changed rapidly and were higher than previously observed. Maximum nutrient concentrations were 2,577 μg L?1 TP, 1,572 μg L?1 RP, 972 μg L?1 NH4-N and 1,983 μg L?1 NO3-N, respectively. Different nutrient response patterns were evident at seasonal, individual event and diurnal time scales—patterns that had gone largely undetected in previous less frequent water quality sampling. Interpretation of these patterns in terms of nutrient source availability, mobilisation and delivery to the stream allowed the development of a conceptual model of catchment nutrient dynamics. Functional stages of nutrient release were identified for the Duck River catchment and were supported by a cluster analysis which confirmed the similarities and differences in nutrient responses caused by the sequence of hydrologic events: (1) a build-up of nutrients during periods with low hydrologic activity, (2) flushing of readily available nutrient sources at the onset of the high flow period, followed by (3) a switch from transport to supply limitation, (4) the accessibility of new nutrient sources with increasing catchment wetness and hydrologic connectivity and (5) high nutrient spikes occurring when new sources become available that are easily mobilised with quickly re-established hydrologic connectivity. Diurnal variations that could be influenced by riverine processes and/or localised point sources were also identified as part of stage (1) and during late recession of some of the winter high flow events. Illustrated by examples from the Duck River study, we demonstrate that the use of high-frequency monitoring to identify and characterise functional stages of catchment nutrient release is a constructive approach for informing and supporting catchment management and future nutrient monitoring strategies.  相似文献   

19.
An important component of ongoing water-resource investigations in the eastern Great Basin, USA, has been to ascertain the impact of future predicted climate change on groundwater availability. As a first step in that analysis, it was hypothesized that potentiometric fluctuations at certain wells would reflect annual-scale precipitation variation. Potentiometric behavior at a well depends on local hydrologic conditions, well construction, and human activities, in addition to natural recharge and regional water levels. Moreover, measurement data are limited for many wells. After preliminarily screening, a large body of well and climate station data, short-term potentiometric responses to annual-scale climate inputs, were identified at 18 wells using a simple visualization methodology developed during the study. For water levels displaying multi-annual trends, the signals were measured as deviations from a linear trendline. Groundwater responses lagged precipitation signals by less than 1 year to as much as 3 years, with most wells showing at most a 1- to 2-year delay. Response amplitude was variable and strongly depended on the hydrologic setting of each well.  相似文献   

20.
Man-made activities exert great influences on fluvial ecosystems, with lowland rivers being substantially modified through agricultural land use and populations. The recent construction of drainage canals in the upper stretch of the Salado-River basin caused the mobilization of huge amounts of salts formerly stored in the groundwater. The main aim of this work was to analyze the effect of the discharges of those canals into the Salado-River water, under different hydrologic conditions, and the role of the wetlands and shallow lakes placed along the canals’ system. Physicochemical variables were measured and water samples were taken during times of high water, mean flows, drought, and extreme drought. The environmental variables and the plankton development were related to the hydrologic regime and reached minimum values during floods because of low temperatures and dilution. Local effects on the water’s ionic composition became pronounced during droughts because of groundwater input. Nutrient concentrations were mainly associated with point wastewater discharges. Conductivity, ion concentrations, total plankton biomass, and species richness increased in the Salado-River downstream site, after the canals’ discharges. The artificial-drainage system definitely promotes the incorporation of salts into the Salado-River basin. In this scenario, a careful hydraulic management is needed to take into account this issue of secondary salinization that threatens the economic exploitation of the region. The wetlands present in this study acted as service environments not only helping to reduce salt, nutrient, and suspended-solid concentrations downstream but also contributing a plethora of species and plankton biomass into the Salado-River main course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号