共查询到20条相似文献,搜索用时 11 毫秒
1.
Airborne particle concentration (APC) measurements were carried out at the Sede Boker experimental station located in the northern Negev Desert, about 50 km south of Beer Sheva, during the years 1987--1997. The basic sampling period used in 1987--1993 was 12 h (day and night) and in 1994--1997 the sampling period was 24 h. For the entire study period, the average airborne particle concentration (APC) was 123.8 microg/m3, the highest value was 4204.2 microg/m3; and the lowest, near 5 microg/m3. For the 24 h average, about 90% of the cases were defined as normal situations (APC between 0-200 microg/m3) about, 8.5%, hazy periods (APC between 200-500 microg/m3), 1.4% dusty periods (APC between 500-1000 microg/m3) and about 0.7% were intense dusty periods (APC above 1000 microg/m3). Statistical analysis of the data showed significant seasonal and monthly fluctuations. The seasonal variation of the APC was further examined using different definitions of the seasons (astronomical, meteorological, and synoptic). 相似文献
2.
3.
Tugrul Yakupoglu Recep Gundogan Turgay Dindaroglu Zekeriya Kara 《Environmental monitoring and assessment》2017,189(11):588
Land-use change through degrading natural vegetation for agricultural production adversely affects many of soil properties particularly organic carbon content of soils. The native shrub land and grassland of Gaziantep-Adiyaman plateau that is an important pistachio growing eco-region have been cleared to convert into pistachio orchard for the last 50 to 60 years. In this study, the effects of conversion of natural vegetation into agricultural uses on soil erodibility have been investigated. Soil samples were collected from surface of agricultural fields and adjacent natural vegetation areas, and samples were analyzed for some soil erodibility indices such as dispersion ratio (DR), erosion ratio (ER), structural stability index (SSI), Henin’s instability index (I s ), and aggregate size distribution after wet sieving (AggSD). According to the statistical evaluation, these two areas were found as different from each other in terms of erosion indices except for I s index (P < 0.001 for DR and ER or P < 0.01 for SSI). In addition, native shrub land and converted land to agriculture were found different in terms of AggSD in all aggregate size groups. As a contrary to expectations, correlation tests showed that there were no any interaction between soil organic carbon and measured erodibility indices in two areas. In addition, significant relationships were determined between measured variables and soil textural fractions as statistical. These obtaining findings were attributed to changing of textural component distribution and initial aggregate size distribution results from land-use change in the study area. Study results were explained about hierarchical aggregate formation mechanism. 相似文献
4.
Jose Ruben Campos-Gaytan Thomas Kretzschmar Claudia Soledad Herrera-Oliva 《Environmental monitoring and assessment》2014,186(11):7961-7985
Semiarid northwestern Mexico presents a growing water demand produced by agricultural and domestic requirements during the last two decades. The community of Guadalupe Valley and the city of Ensenada rely on groundwater pumping from the local aquifer as its sole source of water supply. This dependency has resulted in an imbalance between groundwater pumpage and natural recharge. A two-dimensional groundwater flow model was applied to the Guadalupe Valley Aquifer, which was calibrated and validated for the period 1984–2005. The model analysis verified that groundwater levels in the region are subject to steep declines due to decades of intensive groundwater exploitation for agricultural and domestic purposes. The calibrated model was used to assess the effects of different water management scenarios for the period 2007–2025. If the base case (status quo) scenario continues, groundwater levels are in a continuous drawdown trend. Some wells would run dry by August 2017, and water demand may not be met without incurring in an overdraft. The optimistic scenario implies the achievement of the mean groundwater recharge and discharge. Groundwater level depletion could be stopped and restored. The sustainable scenario implies the reduction of current extraction (up to about 50 %), when groundwater level depletion could be stopped. A reduction in current extraction mitigates water stress in the aquifer but cannot solely reverse declining water tables across the region. The combination of reduced current extraction and an implemented alternative solution (such as groundwater artificial recharge), provides the most effective measure to stabilize and reverse declining groundwater levels while meeting water demands in the region. 相似文献
5.
Beach geomorphic factors for the persistence of subsurface oil from the Exxon Valdez spill in Alaska
Oil from the 1989 Exxon Valdez oil spill persists in some of the Prince William Sound (Alaska) beaches and continues to be a potential threat to the fauna. This paper reports a field investigation during the summer of 2008 of groundwater flow and solute transport in a tidal gravel beach in Smith Island, Prince William Sound. The beach contains oil on one side, the left side (facing landward). Field measurements of water table, salinity, and tracer (lithium) concentration were obtained for an approximate duration of 64 h for two transects, the oiled transect and a clean transect (the right transect). It was found that the hydraulic conductivity and the fresh groundwater recharge into the two transects were similar. It was also found that the beach slope of the mid to high tidal zone along the oiled (left) transect was ~7.4% which is considerably smaller than that of the clean (right) transect (~11.8%). This suggests a higher flushing/replenishing of the right transect with nutrients and/or oxygen, which would have enhanced biodegradation of oil on the right transect if that oil was not washed by waves. We also found that the degree of oiling at each location was inversely dependent on the armoring of the beach surface with clasts and boulders. The applied tracer concentration at the left transect was less than 2% of the source or close to the background level at all locations except a seaward well closest to the applied location, indicating that the tracer applied was diluted or washed out from the beach during the application. Thus, in situations where oil biodegradation is limited by the availability of nutrients and/or dissolved oxygen, applying the chemicals on the beach surface would most likely not enhance oil biodegradation as the applied chemicals would be greatly diluted prior to reaching the oil. Thus, deep injection of nutrients and/or dissolved oxygen is probably the only option for enhancing oil biodegradation. 相似文献
6.
Yassine Charabi Ali Al-Bulooshi Sultan Al-Yahyai 《Environmental monitoring and assessment》2013,185(3):2329-2342
In this paper, COSMO numerical weather prediction model is used to simulate land-sea breeze circulation in the north coast of Oman and to analyze the variability of the PBL depth. Typical summer day 1st August 2009 and winter day 1st January 2009 were simulated and verified by surface observations. The COSMO model was initialized using the German global model which runs as 40 km resolution and 40 vertical layers. The simulations show differences in the onset, strength, and inland penetration of the sea breeze. The high sea-land thermal contrast in the summer season induces earlier onset and progression of the sea breeze with larger horizontal and vertical extents. The summer and winter inland penetration is simulated around 150 and 65 km, respectively. The PBL depth was defined from the verticals profiles of the turbulence kinetic energy (TKE). The simulated PBL height varied at 1,600 m in summer and 700 m in the winter case. These results are in general in good agreement with the simulations of the National Centers for Environmental Prediction Global Data Assimilation System (NCEP-GDAS) model. The dispersive ability of the atmosphere was tested through the vertical mixing coefficient (VMC) generated by NCEP-GDAS simulations. The VMC during the summer simulated case is approximately four times larger than the respective one during the winter case. Consequently, during the advection of winter sea breeze, a shallow dome less than 100 m is shaped and forms an obstacle to the air-pollutant dispersion. 相似文献
7.
The roots of land degradation in the arid region of the United States are set firmly in the era of open range conditions that led to the depletion of rangeland resources in the late 19th and early 20th centuries. Upon closure of the open range and establishment of the U.S. Forest Service and the Bureau of Land Management, public lands in the arid region were protected from the classic tragedy of the commons. Private lands, in turn, fell under the stewardship guidance of such organizations as the Soil Conservation Service, the Agricultural Stabilization and Conservation Service, and the Cooperative Extension Service. Despite these institutional protections, arid land degradation continues at an ecologically and socially unacceptable rate. The most likely explanation for this degradation resides in the institutions and public policies that shape and control livestock grazing. Flaws and disincentives endemic to the grazing permit system have encouraged destructive grazing. Federal subsidies to public- and private-land ranchers have encouraged rangeland stocking rates in excess of carrying capacity on economically and ecologically marginal lands and consistently favored unsound land management practices over superior ones. Policy-generated distortions of market forces have lead to unanticipated and environmentally undesirable land use outcomes. Land management, technical support, and educational institutions have also inadvertently contributed to land degradation in the arid region. Reversing the trend of land degradation in an advanced country like the United States demands that we understand the role of public policy in land use outcomes and that we structure future public policies in accordance with the lessons of recent history. 相似文献
8.
9.
Voss KA Pohlman A Viswanathan S Gibson D Purohit J 《Environmental monitoring and assessment》2012,184(3):1603-1616
Environmental agencies across the United States have searched for adequate methods to assess anthropogenic impacts on the
environment. Biological assessments, which compare the taxonomic composition of an aquatic assemblage to relevant biocriteria,
have surfaced as an effective method to assess the ecological integrity of US waterbodies. In this study, bioassessment data
were collected and analyzed in conjunction with physical habitat and chemical stressor data for streams and rivers within
the San Diego basin from 1998 through 2005. Physical stressors such as sediment loading, riparian destruction, and in-stream
habitat homogenization affect many locations in the region. However, physical habitat measures alone were found to frequently
overestimate the biological integrity of streams in the region. Many sites within the San Diego Basin, although unaffected
by physical stressors, continue to exhibit low biological integrity scores. Sites with low biological integrity tend to possess
higher specific conductance and salinity compared to sites with high biological integrity. We suggest that one possible reason
for these differences is the source water used for municipal purposes. 相似文献
10.
Khomri Zine-eddine Chabaca Mohamed Naçer Boudibi Samir Latif Sarmad Dashti 《Environmental monitoring and assessment》2022,194(7):1-20
Environmental Monitoring and Assessment - Downstream water pollution resulting from anthropogenic pressures on upstream water can cause conflicts, especially in transboundary rivers basins. This... 相似文献
11.
Soil is the major environmental reservoir of organic compounds and soil-air exchange is a key process in governing the environmental fate of these compounds on a regional and global scale. Samples of air and soil were collected to study the levels of PAHs in the air and soil of the Agra region. Concentrations of PAH measured at four locations in the city of Agra, covers industrial, residential, roadside and agricultural areas. Samples were extracted with hexane by ultrasonic agitation. Extracts were then fractioned on a silica-gel column and the aromatic fraction was analysed by GC-MS. The mean concentration of the total PAH (T-PAH) in the air of Agra was 24.95, 17.95 and 14.25 ng m(-3), during winter, monsoon and summer respectively. The average concentration of T-PAH in the soil of Agra was 12.50, 8.25 and 6.44 μg g(-1) in winter, monsoon and summer seasons respectively. The aim of this study was to investigate the rate of approach to equilibrium partitioning of PAHs between air and soil compartments and to determine the direction of net flux of the studied PAH between air and soil. Calculated soil-air fugacity quotients indicate that the soil may now be a source of some lighter weight PAHs to the atmosphere, whereas it appears to be still acting as a long-term sink for the heavier weight PAHs to some extent in this region. 相似文献
12.
The interagency Forest Health Monitoring Program involves a network of about 4200 forest plots on a triangular grid across the United States. We present data on recent mortality of trees 27.9 cm diameter from the first three years of measurements in California (1992–1994). Three plot designs were used to collect data representative of a 1-ha stand at each site; the designs differed primarily in total area sampled (0.067, 0.4 and 1.0 ha). Approximately 50 sites were visited each year yielding a total of about 150. Field tallies showed few cases of recent mortality in the smallest plot size. Cumulative distribution functions of recent dead tree densities in the 0.067-ha plots differed significantly from those generated by tallies from entire 1-ha stands. We conclude that an area of 0.067 ha is unsuitable to assess and monitor overstory mortality in Pacific Coast forests.The U.S. government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged. 相似文献
13.
Xing-Ming Hao Yang Li Hai-Jun Deng 《Environmental monitoring and assessment》2013,185(12):10027-10038
The roots of Populus euphratica, a plant that grows in the lower reaches of the Tarim River, Northwest China, exhibit a significant level of hydraulic redistribution; however, quantitative assessments of the water-sharing process and its ecological effects are limited. This study was designed to obtain such data using an assessment model based on field observation parameters, including soil water content (soil water potential), root distribution, and stable isotope δ18O values of soil and plant samples during the entire growing season. The results showed that hydraulic redistribution in P. euphratica can be detected in 0–120 cm soil layers, with the amount of hydraulically redistributed water (HRW) in the soil found at different depths as follows: 60–80?>?40–60?>?20–40?>?0–20?>?80–100?>?100–120 cm. The variations in HRW in soil layers can be partly attributed to the vertical distribution of roots. The denser roots found at greater depths positively influenced the amount of redistributed water in lower soil layers. During the growing season, the amount of HRW reached a daily average of 0.27 mm, which allowed increased transpiration and provided an adequate water supply to herbs. Based on the stable isotope (δ18O) data, the amount of HRW provided by the roots of P. euphratica could meet 22–41 % of its water demand. 相似文献
14.
Assessment of cylindrospermopsin toxin in an arid Saudi lake containing dense cyanobacterial bloom 总被引:1,自引:0,他引:1
Zakaria A. Mohamed Abdulrahman M. Al-Shehri 《Environmental monitoring and assessment》2013,185(3):2157-2166
This study reports the presence of the cyanobacterial toxin cylindrospermopisn (CYN) and its producer Cylindrospermopsis raciborskii for the first time in Saudi freshwater sources. C. raciborskii was found in Gazan Dam Lake water with two morphotypes (coiled and straight). The appearance and cell density of this species was significantly positively related to high temperature and high ammonium concentrations, and negatively with nitrate and phosphate concentrations in the lake. Intracellular concentrations of CYN (4–173 μg L?1) were associated with C. raciborskii rather than other cyanobacteria with a maximal value obtained in June 2011, coinciding with the highest bloom of this species (19?×?107 trichome L?1). CYN cell quotas (0.6–14.6 pg cell?1) varied significantly along the study period and correlated with most environmental factors. The results of ELISA and liquid chromatography-mass spectrometry proved that the CYN production by strains of this species was isolated from this lake during the present study, with an amount reaching 568 μg g?1. Extracellular CYN was also detected in cell-free lake water at concentrations 0.03–23.3 μg L?1, exceeding the drinking water guideline value of 1 μg L?1 during the Apr–Jul period. As this lake is an important source for drinking and irrigation waters, CYN monitoring should be included in the environmental and health risk assessment plans of these water bodies. 相似文献
15.
Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California 总被引:1,自引:0,他引:1
M. P. Burke T. S. Hogue A. M. Kinoshita J. Barco C. Wessel E. D. Stein 《Environmental monitoring and assessment》2013,185(12):10131-10145
Post-fire runoff has the potential to be a large source of contaminants to downstream areas. However, the magnitude of this effect in urban fringe watersheds adjacent to large sources of airborne contaminants is not well documented. The current study investigates the impacts of wildfire on stormwater contaminant loading from the upper Arroyo Seco watershed, burned in 2009. This watershed is adjacent to the Greater Los Angeles, CA, USA area and has not burned in over 60 years. Consequently, it acts as a sink for regional urban pollutants and presents an opportunity to study the impacts of wildfire. Pre- and post-fire storm samples were collected and analyzed for basic cations, trace metals, and total suspended solids. The loss of vegetation and changes in soil properties from the fire greatly increased the magnitude of storm runoff, resulting in sediment-laden floods carrying high concentrations of particulate-bound constituents. Post-fire concentrations and loads were up to three orders of magnitude greater than pre-fire values for many trace metals, including lead and cadmium. A shift was also observed in the timing of chemical delivery, where maximum suspended sediment, trace metal, and cation concentrations coincided with, rather than preceded, peak discharge in the post-fire runoff, amplifying the fire’s impacts on mass loading. The results emphasize the importance of sediment delivery as a primary mechanism for post-fire contaminant transport and suggest that traditional management practices that focus on treating only the early portion of storm runoff may be less effective following wildfire. We also advocate that watersheds impacted by regional urban pollutants have the potential to pose significant risk for downstream communities and ecosystems after fire. 相似文献
16.
Vegetation NDVI Linked to Temperature and Precipitation in the Upper Catchments of Yellow River 总被引:3,自引:0,他引:3
Fanghua Hao Xuan Zhang Wei Ouyang Andrew K. Skidmore A. G. Toxopeus 《Environmental Modeling and Assessment》2012,17(4):389-398
Vegetation in the upper catchment of Yellow River is critical for the ecological stability of the whole watershed. The dominant vegetation cover types in this region are grassland and forest, which can strongly influence the eco-environmental status of the whole watershed. The normalized difference vegetation index (NDVI) for grassland and forest has been calculated and its daily correlation models were deduced by Moderate Resolution Imaging Spectroradiometer products on 12 dates in 2000, 2003, and 2006. The responses of the NDVI values with the inter-annual grassland and forest to three climatic indices (i.e., yearly precipitation and highest and lowest temperature) were analyzed showing that, except for the lowest temperature, the yearly precipitation and highest temperature had close correlations with the NDVI values of the two vegetation communities. The value of correlation coefficients ranged from 0.815 to 0.951 (p?<?0.01). Furthermore, the interactions of NDVI values of vegetation with the climatic indicators at monthly interval were analyzed. The NDVI of vegetation and three climatic indices had strong positive correlations (larger than 0.733, p?<?0.01). The monthly correlations also provided the threshold values for the three climatic indictors, to be used for simulating vegetation growth grassland under different climate features, which is essential for the assessment of the vegetation growth and for regional environmental management. 相似文献
17.
Marmolejo-Rodríguez AJ Sánchez-Martínez MA Romero-Guadarrama JA Sánchez-González A Magallanes-Ordóñez VR 《Journal of environmental monitoring : JEM》2011,13(8):2182-2189
Extensive waste deposits (tailings) and ash from the ignition oven of the abandoned gold mine of mining district El Triunfo (MD-ET) in Baja California Sur, Mexico have released trace elements into the sediments of the Hondo-Las Gallinas-El Carrizal arroyo, which connects to the Pacific Ocean through an evaporitic basin. Migration of these elements through the arroyo is mainly caused by winds or tropical hurricanes that occur sporadically during the summer and cause the otherwise dry arroyo to overflow. To evaluate the concentration and distribution of the elements As, Hg, Pb, and Zn along the 48 km arroyo, surface sediments were collected from 26 sites, ranging from close to the MD-ET to the mouth of the arroyo at the Pacific Ocean. Concentrations in tailings and ash were for As 8890 and 505?000 mg kg(-1); for Hg 0.336 and 54.9 mg kg(-1); for Pb 92,700 and 19,300 mg kg(-1); and for Zn 49,600 and 1380 mg kg(-1). The average of the Normalized Enrichment Factor (Av-NEF) in surface sediments, calculated using background levels, indicates that the sediments are severely contaminated with As and Zn (Av-NEF = 22), Pb (Av-NEF = 24) and with a moderate contamination of Hg (Av-NEF = 7.5). The anthropogenic influence of those elements is reflected in the arroyo sediments as far as 18 km away from the MD-ET, whereas the samples closest to the discharge into the Pacific Ocean show a natural to moderate enrichment for As and Zn and low or no enrichment for Hg and Pb. A principal components analysis identified four principal components that explained 90% of the total variance. Factor 1 was characterized by a high positive contribution of the anthropogenic source elements, especially As, Pb, and Zn (37%), whereas Factor 2 was strongly correlated with the oxy-hydroxides of Fe and Mn (27%). Factor 3 was correlated with Li (16%) and Factor 4 with Al (10%), which indicates more than one source of lithogenic composition, though they played a minor role in the distribution of the elements. 相似文献
18.
The Vegetation of Wet Meadows in Relation to Their Land-use 总被引:5,自引:0,他引:5
Susan M. Galatowitsch Diane C. Whited Richard Lehtinen Jason Husveth Karen Schik 《Environmental monitoring and assessment》2000,60(2):121-144
Wetland biomonitoring approaches are needed to determine when changes in response to stressors are occurring and to predict the consequences of proposed land-use changes. These approaches require an understanding of shifts in biota that occur in response to land-use, data that are lacking for most kinds of wetlands. Changes in floristic composition corresponding to land-use differences at multiple scales (site to 2500 m radius) were characterized for 40 wet meadows associated with prairie glacial marshes in Minnesota (U.S.A.). In general, guild was more useful than species composition for indicating land-use impacts. Site impacts (stormwater, cultivation) and landscape disturbance (agriculture and urbanization, combined), coincide with a reduction in native graminoid and herbaceous perennial abundance (e.g., Carex lasiocarpa, Calamagrostis canadensis, Spartina pectinata). This vegetation is replaced with annuals (e.g, Bidens cernua, Polygonum pensylvanicum) in recently cultivated sites or introduced perennials (e.g., Phalaris arundinacea, Typha angustifolia) and floating aquatics (lemnids) in stormwater impacted wetlands. Ditches also reduce native perennial importance and increase perennials, but only when they are in highly impacted landscapes. 相似文献
19.
S. Sarun A. Ghermandi A. M. Sheela J. Justus P. Vineetha 《Environmental monitoring and assessment》2018,190(12):727
The understanding of the regional and local dimensions of vulnerability due to climate change is essential to develop appropriate and targeted adaptation efforts. We assessed the local dimensions of vulnerability in the tropical state of Kerala, India, using a purposely developed vulnerability index, which accounts for both environmental and socio-economic factors. The large extents of coastal wetlands and lagoons and high concentration of mangrove forests make the state environmentally vulnerable. Low human development index, large population of socially deprived groups, which are dependent on the primary sector, and high population density make the state vulnerable from a socio-economic point of view. The present study investigates climate change vulnerability at the district level in the State of Kerala relying on a purposely developed composite vulnerability index that encompasses both socio-economic and environmental factors. The Kerala coast contains the socio-economically and ecologically most vulnerable regions, as demonstrated by a composite vulnerability index. 相似文献