首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reproductive (queen) and nonreproductive (worker) castes of eusocial insect colonies are a classic example of insect polyphenism. A complementary polyphenism may also exist entirely among females in the reproductive caste. Although less studied, reproductive females may vary in behavior based on size-associated attributes leading to the production of daughter workers. We studied a bee with flexible social behavior, Megalopta genalis, to better understand the potential of this polyphenism to shape the social organization of bee colonies and, by extension, its role in the evolution of eusociality. Our experimental design reduced variation among nest foundresses in life history variables that could influence reproductive decisions, such as nesting quality and early adulthood experience. Within our study population, approximately one third of M. genalis nests were eusocial and the remaining nests never produced workers. Though they do not differ in survival, nest-founding females who do not attempt to produce workers (which we refer to as the solitary phenotype) are significantly smaller and become reproductive later than females who attempt to recruit workers (the social phenotype). Females with the social phenotype are more likely to produce additional broods but at a cost of having some of their first offspring become nonreproductive workers. The likelihood of eusocial organization varies with body size across females of the social phenotype. Thus, fitness consequences associated with size-based plasticity in foundress behavior has colony level effects on eusociality. The potential for size-based polyphenisms among reproductive females may be an important factor to consider in the evolutionary origins of eusociality.  相似文献   

2.
Understanding the origin of disease resistance in social insects is difficult due to the lack of well-established phylogenies of presocial and eusocial species and the absence of extant basal and intermediate forms. Moreover, comprehensive accounts of infection-control traits in social insect lineages are not available. Therefore, to explore the evolution of pathogen control in social insects we used cellular automata models to analyze the efficacy of immunity and nest hygiene, which we assumed were basal traits, and allogrooming, which likely followed the transition to eusociality, and their interactions with colony demography and patterns of worker spatial distribution. Models showed that nest hygiene provided an immediate survival benefit and that immunity lowered overall disease susceptibility under both constant and periodic exposure scenarios. Allogrooming increased survivorship in chronically challenged colonies but also increased pathogen transmission rates under conditions of periodic exposure. Colonies having demographies biased towards young or old individuals had slightly higher mortality than those with heterogeneous demographies. The distribution of older individuals relative to the nest center had no significant effect on susceptibility and provided only a minor survival advantage. Models indicated that nest hygiene and immunity function on different temporal scales and can interact with demography to lower disease risks. Our results suggest how infection control systems in social insects could have been built upon the inducible immune defenses and nest hygienic behaviors of solitary and presocial ancestors and served as important preadaptations to manage disease exposure and transmission in colonies of eusocial species.  相似文献   

3.
Eusociality in mammals is defined in the present paper by the following criteria: reproductive altruism (which involves reproductive division of labor and cooperative alloparental brood care), overlap of adult generations, and permanent (lifelong) philopatry. We argue that additional criteria such as the existence of castes, colony size, reproductive skew, and social cohesion are not pertinent to the definition of eusociality in mammals. According to our definition of mammalian eusociality, several rodent species of the African family Bathyergidae can be considered eusocial, including the naked mole-rat (Heterocephalus glaber), Damaraland mole-rat (Cryptomys damarensis), and several additional, if not all, species in the genus Cryptomys. Furthermore, some species of social voles (like Microtus ochrogaster) may also fulfill criteria of mammalian eusociality. Understanding the evolution of eusociality in mole-rats requires answers to two primary questions: (1) What are the preconditions for the development of their eusocial systems? (2) Why do offspring remain in the natal group rather than dispersing and reproducing? Eusociality in mammals is by definition a special case of monogamy (more specifically: monogyny one female breeding), involving prolonged pair bonding for more than one breeding period. We argue that eusociality in mole-rats evolved from a monogamous mating system where cooperative brood care was already established. A tendency for group living is considered to be an ancestral (plesiomorph) trait among African bathyergid mole-rats, linking them to other hystricognath rodents. A solitary lifestyle seen in some genera, such as Bathyergus, Georychus, and Heliophobius, is assumed to be a derived trait that arose independently in different lineages of bathyergids, possibly as a consequence of selective constraints associated with the subterranean environment. In proximate terms, in eusocial mole-rats either puberty is assumed to be developmentally delayed so that under natural conditions most animals die before dispersal is triggered (e.g., in the case of Heterocephalus) or dispersal is induced only by an incidental encounter with an unfamiliar, yet adequate sexual partner (e.g., in the case of Cryptomys). Ultimately, a combination of strategies involving either dispersal and/or philopatry can be beneficial, especially in a highly unpredictable environment. If genetic relatedness among siblings is high (e.g., a coefficient of relatedness of 0.5 or more), then philopatry would not invoke an appreciable loss of fitness, especially if the cost of dispersing is higher than staying within the natal group. High genetic relatedness is more likely in a monogamous mating system or a highly inbred population. In this paper, we argue that the preconditions for eusociality in bathyergid mole-rats were a monogamous mating system and high genetic relatedness among individuals. We argue against the aridity food-distribution hypothesis (AFDH) that suggests a causal relationship between cooperative foraging for patchily distributed resources and the origin of eusociality. The AFDH may explain group size dynamics of social mole-rats as a function of the distribution and availability of resources but it is inadequate to explain the formation of eusocial societies of mole-rats, especially with respect to providing preconditions conducive for the emergence of eusociality.  相似文献   

4.
Small societies of totipotent individuals are good systems in which to study the costs and benefits of group living that are central to the origin and maintenance of eusociality. For instance, in eusocial halictid bees, some females remain in their natal nest to help rear the next brood. Why do helpers stay in the nest? Do they really help, and if yes, is their contribution large enough to voluntarily forfeit direct reproduction? Here, we estimate the impact of helpers on colony survival and productivity in the sweat bee Halictus scabiosae. The number of helpers was positively associated with colony survival and productivity. Colonies from which we experimentally removed one helper produced significantly fewer offspring. However, the effect of helper removal was very small, on average. From the removal experiment, we estimated that one helper increased colony productivity by 0.72 additional offspring in colonies with one to three helpers, while the increase was smaller and not statistically significant in larger colonies. We conclude that helpers do actually help in this primitively eusocial bee, particularly in small colonies. However, the resulting increase in colony productivity is low, which suggests that helpers may be constrained in their role or may attempt to reproduce.  相似文献   

5.
When females mate with a heterospecific male, they do not usually produce viable offspring. Thus, there is a selective pressure for females to avoid interspecific mating. In many species, females innately avoid heterospecific males; females can also imprint on their parents to avoid later sexual interactions with heterospecific males. However, it was previously unknown whether adult females can learn to discriminate against heterospecific males. We tested the hypothesis that adult females previously unable to avoid interspecific mating learn to avoid such mating after being exposed to heterospecific males. Syrian hamster (Mesocricetus auratus) females not previously exposed to Turkish hamster (Mesocricetus brandti) males can discriminate between odors of conspecific and heterospecific males, but they mate with either type of male. However, when we exposed adult females to both a conspecific male and a heterospecific male through wire-mesh barriers for 8 days, and then paired them sequentially with the two males, females were more receptive to conspecific males and more aggressive to heterospecific males. When females were paired with the heterospecific male first and the conspecific male second, no female was receptive and all were aggressive to heterospecific males. When females were paired with the conspecific male first, only 43% of females were then aggressive toward the heterospecific male. That is, interactions with conspecific males may decrease a female’s ability to properly avoid heterospecific males. Our study clearly shows for the first time that females can learn during adulthood to avoid interspecific mating just by being exposed to stimuli from heterospecific males.  相似文献   

6.
Monogyne fire ant, Solenopsis invicta, colony workers are territorial and are aggressive toward members of other fire ant colonies. In contrast, polygyne colony workers are not aggressive toward non-nestmates, presumably due to broader exposure to heritable and environmentally derived nestmate recognition cues (broad template). Workers from both monogyne and polygyne fire ant colonies execute newly mated queens after mating flights. We discovered that monogyne and polygyne queens have a remarkable effect on conspecific recognition. After removal of their colony queen, monogyne worker aggression toward non-nestmate conspecifics quickly drops to merely investigative levels; however, heterospecific recognition/aggression remains high. Queenless monogyne or polygyne worker groups were also not aggressive toward newly mated queens. Queenless worker groups of both forms that adopted a monogyne-derived newly mated queen became aggressive toward non-nestmate workers and newly mated queens. We propose that the powerful effect of fire ant queens on conspecific nestmate recognition is caused by a queen-produced recognition primer pheromone that increases the sensitivity of workers to subtle quantitative differences in nestmate recognition cues. This primer pheromone prevents the adoption of newly mated queens (regulation of reproductive competition) in S. invicta and when absent allows queenless workers to adopt a new queen readily. This extraordinary discovery has broad implications regarding monogyne and polygyne colony and population dynamics.  相似文献   

7.
Halictine bees exhibit a wide range of social behaviour that varies both inter- and intraspecifically. Although previous studies suggested that the intraspecific variation might be attributed to temperature differences, there was no direct evidence to detect the relationships between temperature and socialities. Lasioglossum (Evylaeus) baleicum exhibited solitary behaviour in a cooler locality (Kawakita) because of the shorter breeding season; in a warmer locality (Nishioka Park), however, this bee species exhibited eusociality at sunny site and solitary behaviour at shady site, whereas a molecular phylogeny confirms that all of these colonies are evidently conspecific. Therefore, we examined the effect of degree-day accumulation on the sympatric social variation of L. baleicum by rearing the bees to calculate the threshold temperature. Whereas they showed high mortality, the threshold temperature was estimated to be 10.33°C and the expected degree-day accumulation was 340 degree days. When we use this value of a degree-day accumulation to estimate the expected eclosion date, the estimated dates were always consistent with observed eclosion dates. In any sites where the bees were solitary, the degree-day accumulation was not enough for the second eclosion by the end of the bee-active season. In Nishioka Park, sex ratio of the first brood was female biased, and daughters were smaller than mothers; in Kawakita, however, there was no sex bias, and daughters were as large as their mothers indicating that the foundresses seem to produce gyne-sized females in Kawakita but worker-sized females in Nishioka though these females do not become workers at shady site.  相似文献   

8.
To test the hypothesis that the honeybee hybrid zone in South Africa is a tension zone due to increased reproductive conflict in colonies that contain both Apis mellifera capensis and Apis mellifera scutellata worker genotypes, we constructed mixed subspecies and hybrid colonies via a combination of artificial and natural matings. We measured emergence weight, ovary activation, and the presence/absence of a spermatheca on workers of different genotypes. We show that the measured characteristics were all affected by genotype with some traits also affected by the social environment in which the worker was reared. Workers with both an A. m. capensis mother and father had the highest emergence weight. When workers had an A. m. capensis mother, paternity affected emergence weight with A. m. capensis fathers producing heavier workers. When the queen was A. m. scutellata, paternity had less effect on weight. Presence of spermatheca was highest in mixed colonies irrespective of maternity and colonies containing pure A. m. capensis workers only. Paternity had a significant effect on the presence of a spermatheca within mixed colonies, with workers that had an A. m. capensis father being more likely to possess a spermatheca. Rates of ovary activation were highest in colonies with an A. m. scutellata queen mated to drones of both genotypes, suggesting that mixed subspecies colonies likely suffer increased reproductive strife among workers. Our results provide support for the hypothesis that the South African honeybee hybrid zone is a tension zone arising from reduced fitness of genetically mixed colonies.  相似文献   

9.
Eusociality is characterized by a reproductive division of labor, wherein workers respond to the presence of reproductive individuals by refraining from reproduction themselves and restricting the reproductive efforts of others. Our understanding of how eusociality is maintained therefore depends on characterizing the mechanism by which workers detect the presence of a reproductive. Variations in cuticular hydrocarbons correspond to changes in reproductive ability in ants, and experimental studies are beginning to reveal the function of hydrocarbons as signals. In this study, we compare the cuticular hydrocarbon profiles of dominant and reproductive workers and queens of the ant Odontomachus brunneus with profiles of non-reproductive workers. Using split/reunification tests we document the existence of worker policing in both queenless and queenright colonies; supernumerary reproductives were treated aggressively by nestmates. Finally, we induce aggression and replicate queen-like submissive nestmate responses by supplementing the hydrocarbon profile of workers with (Z)-9-nonacosene, a compound that was significantly more abundant on the cuticles of reproductives. In three bioassays, we compare this manipulation to various control manipulations of the hydrocarbon profile and demonstrate that workers gauge the reproductive activity of nestmates through changes in their cuticular hydrocarbon profiles.  相似文献   

10.
Summary Production of the major subcaste and its contribution to nest survival in the dimorphic ant Colobopsis nipponicus was examined in the field. In this species, the first major workers were reared in the second brood, very early in the colony life cycle. A field experiment demonstrated that artificial colonies without major workers could not survive, whereas colonies with at least one major worker per nest entrance could. Because major workers of C. nipponicus defend the nest entrance by head plugging, the lack of nest defenders in the experimental colonies seemed to be a major cause of nest failure. The defensive value of major workers was much higher than that of minor workers. Many artificial colonies without major workers were displaced by competitors for nest sites, especially by those of other conspecific colonies. In addition, more than 90% of field colonies nested with other conspecific colonies on the same tree. The early production of major workers in C. nipponicus seemed to be very important for the survival of incipient colonies.  相似文献   

11.
Recognition and avoidance of conspecifics based on chemical cues could reduce the risk of aggressive interactions between males. Success in agonistics encounters with unfamiliar males should be lower than with previously known familiar males. Then, males should avoid the chemicals from unfamiliar males with respect to those from familiar males. However, boldness and size could affect the outcome of encounters between males and, consequently, the response to chemical cues of conspecific males. We compared the time spent by male turtles Mauremys leprosa in water pools with chemical stimuli from unfamiliar or familiar males or with their own chemical stimuli. We also performed a behavioral test to estimate boldness of turtles in an antipredatory situation. Turtles avoided the chemicals from unfamiliar males respect to familiar ones and their own odors, but their responses depended on boldness and size of the tested turtle. Bold turtles avoided water with chemicals of unfamiliar males, but not with chemicals of familiar males, whereas shy turtles avoided chemicals of both familiar and unfamiliar males. On the other hand, large males avoided the odor from unfamiliar males, but small males did not avoid water with the odor from other males. Results suggest that male M. leprosa can detect chemicals released to water from conspecific males and discriminate between familiar and unfamiliar males. However, responses to these chemicals depended on boldness and body size of the responding turtle because these factors may affect intrasexual competition.  相似文献   

12.
Like many modular organisms, genetically distinct colonies of the hydrozoan Hydractinia symbiolongicarpus naturally fuse to produce chimeras. One of the principal cooperative benefits of fusion arises from the increased size of the resulting chimeric individual, which may enhance survivorship. However, fusion also promotes conflict through competition between cell lineages for representation in reproductive tissues. Previous studies on H. symbiologicarpus show that, consistent with kin selection theory, a highly polymorphic self/non-self recognition system limits fusion to close kin. However, these recognition systems are intrinsically subject to error. Conspecific acceptance threshold theory predicts that as the costs and benefits of making recognition errors change, or the frequencies of encounters between acceptable and unacceptable kin vary, the recognition system should respond. Specifically, as the benefits of acceptance decline or the frequency of encounters with unacceptable individuals increases, the acceptance threshold should become more restrictive. We tested this hypothesis by monitoring changes in the expression of fusion/rejection behaviors of H. symbiolongicarpus during colony establishment, a period of high mortality when the size-dependent benefits of fusion may be changing most rapidly, and the frequency of encounters with close kin declines. Across seven full-sib families, fusion frequencies between pairs of sibling colonies declined from 73% for 3-day-old colonies to 58% by day 12. This decline is consistent with optimal acceptance threshold theory. However, the period of maximum decline also corresponds to an interval during which the recognition effector mechanism becomes fully functional, suggesting that the shift to a more restrictive conspecific acceptance threshold may reflect an intrinsic constraint on recognition system maturation.Communicated by T. Czeschlik  相似文献   

13.
Associations among organisms are thought to form because the benefits, such as increased foraging efficiency or decreased risk of predation, outweigh any costs, such as resource competition. Though many interspecific associations have been described for closely related mammals, few studies have examined the associations between mammals in different orders. The yellow mongoose (Cynictus pencillata), a carnivore, and the Cape ground squirrel (Xerus inauris), a rodent, co-occur in arid and semi-arid South Africa where they share sleeping burrows, predators, a similar body size, and the capability to emit alarm calls in response to predators. To investigate enhanced predator avoidance as a potential benefit explaining the persistence of this association, we assessed individual mongoose vigilance alone and with squirrels or other mongooses, and with varying interspecific group size, using field observations. We also tested for responses to conspecific and heterospecific alarm calls in both study species using playback experiments. The proportion of time mongoose individuals spent vigilant decreased in the presence of squirrels or other mongooses and was negatively correlated with interspecific group size; a similar pattern was previously shown for conspecific groups of Cape ground squirrels. These results are predicted by both the dilution and collective detection hypotheses. In addition, hetero- and conspecific alarm calls elicited vigilance responses in both species. These results suggest that both species can benefit from the collective detection and dilution arising from their interspecific association and that this interspecific association could be mutualistic.  相似文献   

14.
Summary Adult pairs of the woodroach Cryptocercus punctulatus were reported to be incapable of founding colonies independently because the presence of a recently molted juvenile was required to transfer encysted symbiotic gut protozoa to newly hatched roaches. Field and laboratory evidence presented here shows that adult pairs of C. punctulatus do found colonies and that juveniles are generally not present to provide neonates with protozoan cysts. Newly hatched nymphs acquire their intestinal symbionts by feeding on the anal fluids of the adult roaches, i.e., by proctodeal trophallaxis. Conditions other than a symbiotic association with protozoans may have contributed to the evolution of eusociality in termites (Isoptera).  相似文献   

15.
Summary Genetic relatedness in social insect colonies may vary spatially or temporally as a result of changes in colony membership due to immigration or to variation in patterns of maternity and paternity. We estimated relatedness for eastern tent caterpillars (Malacosoma americanum) in laboratory colonies derived from egg masses using multilocus genotypic data derived from electrophoresis. This estimate is compared with estimates obtained from colony samples taken in the field at four intervals spanning the larval developmental season. We found that average intracolony relatedness is close to 0.5 initially but declines through the developmental season due to colony merging, showing that caterpillars do not discriminate between siblings and nonsiblings in order to preserve colony family structure. Using the intracolony values together with relatedness values for higher levels of population structure, we estimated the effective mean number of simple families represented in single colonies through the season. The overall effective number of families per tent increased from one at the time of eclosion to 1.3 by the end of the season. Average intracolony relatedness remained relatively high despite the occurrence of colony merging, apparently as a result of the low density of tents on most trees, combined with high relatedness within the original colonies. Thus, high intracolony relatedness is maintained in M. americanum populations through the effects of adult dispersal, mating, and oviposition patterns, rather than through behavioral discrimination mechanisms of the larvae. These findings underscore the importance of considering the causes of temporal variation in genetic relatedness as well as the consequences for the indirect component of inclusive fitness. Correspondence to: J.T. Costa  相似文献   

16.
In some mutualisms, a plant or insect provides a food resource in exchange for protection from herbivores, competitors or predators. This food resource can benefit the consumer, but the relative importance of different mechanisms responsible for this benefit is unclear. We used a colony-level simulation model to test the relative importance of increased larval production, increased worker foraging and increased worker survival for colony growth of fire ants, Solenopsis invicta, that consume plant-based foods. Increased food for larvae had the largest effect on colony growth of S. invicta followed by decreased worker mortality. Increased foraging rate had a small effect in the simulation model but data from a small laboratory experiment and another published study suggest that plant-based foods have little or no effect on foraging rates of S. invicta. Colony growth steadily increased the longer plant-based food was available and colonies were most responsive to plant-based food in the early summer (i.e., June). Our results demonstrate that population level simulation modeling can be a useful tool for examining the ecology of mutualistic interactions and the mechanisms through which species interact.  相似文献   

17.
Mutualistic relationships between ants and aphids are well studied but it is unknown if aphid-attending ants place a greater relative importance on defending aphids from aphid-predators or from competing ant colonies. We tested the hypothesis that aphid-attending ants defend their aphids against aphid-predators more aggressively than against ants from neighboring colonies. We conducted introduction trials by placing an individual non-predatory insect, an aphid-predator, or a foreign conspecific ant on the leaf of a resident ant. We found that ants did not attack non-predatory insects, but did attack competing ants and aphid-predators. When we presented resident ants with both the threats (i.e., predator and competitor) at the same time, residents always attacked potential competitors as opposed to aphid-predators. We suggest this behavior may reduce the likelihood of raids by neighboring colonies. Ants appear to balance both the energetic costs of making an attack and the costs associated with losing aphids to a predator, against the benefits of signaling their defensive ability to rivals and/or preventing rivals from gaining knowledge of a potential food resource.  相似文献   

18.
Genetic influence on caste in the ant Camponotus consobrinus   总被引:6,自引:0,他引:6  
Genetic influences on polyethism within social insect colonies are well known, suggesting that the determination of caste (soldiers and minor workers) may also be genetically mediated. The Australian sugar ant Camponotus consobrinus is suitable for such a study, having soldiers and minor workers that follow a complex allometry. Further, although most C. consobrinus colonies are monogynous, 13 of 42 surveyed using microsatellites were found to be polygynous. Thus, although a minority of colonies were polygynous, the great majority of queens live in polygynous colonies. From the 29 monogynous colonies studied, we inferred that the queens are monandrous. Ants from four polygynous colonies were assigned to families on the basis of microsatellite genotypes, after measurements had been taken of head width and scape length. These measurements reflect a complex allometry interpretable as soldier and minor worker growth curves with a large changeover zone. Genetic influence on caste determination was examined by testing for differences between families within colonies in the distribution of scape lengths, residuals from the overall colony allometric curve, and proportions of soldiers and minor workers (as determined by head width falling above or below the inflection point of the overall colony allometric curve). Families in all four colonies differed significantly in caste proportions and in head-width distributions, and three of the four colonies showed significant differences between families in residuals from the overall colony growth curve. Nested ANOVAs using head widths and scape-length residuals showed that when the effect of family is removed, intercolony differences in allometry are negligible. This evidence indicates genetic rather than environmental causes for the observed differences between families. We speculate that this variation may reflect some selective advantage to within-colony heterogeneity between families or that selective differences are few between a wide array of family growth patterns. Received: 16 June 1999 / Received after revision: 13 September 1999 / Accepted: 25 September 1999  相似文献   

19.
Summary The honey ant Myrmecocystus mimicus is a scavenger, forages extensively on termites, collects floral nectar, and tends homoptera. Individual foragers of M. mimicus usually disperse in all directions when leaving the nest, but there are also groups of foragers that tend to swarm out of the nest primarily in one direction. Such massive departues are usually at irregular intervals, which may last several hours. The results of field and laboratory experiments suggest that these swarms of foragers are organized by a group recruitment process, during which recruiting scout ants lay chemical orientation trails with hindgut contents and simultaneously stimulate nestmates with a motor display and secretions from the poison gland. Usually these columns travel considerable distances (4–48 m) away from the nest, frequently interfering with the foraging activity of conspecific neighboring colonies.To prevent a neighboring colony from access to temporal food sources or to defend spatiotemporal borders, opposing colonies engage in elaborate display tournaments. Although hundreds of ants are often involved during these tournaments almost no physical fights occur. Instead, individual ants confront each other in highly sterotyped aggressive displays, during which they walk on stilt legs while raising the gaster and head. Some of the ants even seem to inflate their gasters so that the tergites are raised and the whole gaster appears to be larger. In addition, ants involved in tournament activities are on average larger than foragers.The dynamics of the tournament interactions were observed in several colonies over several weeks-mapping each day the locations of the tournaments, the major directions of worker routes away from the nest, and recording the general foraging activities of the colonies. The results indicate that a kind of dominance order can occur among neighboring colonies. On the other hand, often no aggressive interactions among neighboring colonies can be observed, even though the colonies are actively foraging. In those cases the masses of foragers of each colony depart in one major direction that does not bring them into conflict with the masses of foragers of a neighboring colony. This stability, however, can be disturbed by offering a new rich food source to be exploited by two neighboring colonies. This invariably leads to tournament interactions.When a colony is considerably stronger than the other, i.e., with a much larger worker force, the tournaments end quickly and the weaker colony is raided. The foreign workers invade the nest, the queen of the resident colony is killed or dirven off, while the larvae, pupae, callow workers, and honey pot workers are carried or dragged to the nest of the raiders. From these and other observations we conclude that young M. mimicus queens are unlikely to succeed in founding a colony within approximately 3 m of a mature M. mimicus colony because they are discovered and killed, or driven off by workers of the resident colony. Within approximately 3–15 m queens are more likely to start colonies, but these incipient groups run a high risk of being raided and exterminated by the mature colony.Although populations of M. mimicus and M. depilis tend to replace each other, there are areas where both species overlap marginally. Foraging areas and foraging habitats of both species also overlap broadly, but we never observed tournament interactions between M. mimicus and M. depilis.The adaptive significance of the spatiotemporal territories in M. mimicus is discussed.  相似文献   

20.
Hybridization between two closely related species breeding in sympatry depends on the effectiveness of both inter-sex (sexual attraction) and intra-sex (competitors’ repulsion) components of communication. As birds primarily communicate acoustically, several studies have investigated interspecific vocal interactions between the sexes and their consequences on sympatric zones with a focus on songbird species. Here, we investigate these issues on intra-sex vocal interactions occurring during incubation in two non-songbird sister species, the Yelkouan Puffinus yelkouan and the Balearic Puffinus mauretanicus shearwaters. We compared the acoustical structure of calls and the behaviors obtained in response to same-sex Yelkouan and Balearic calls across allopatric parental populations from each species and a sympatric-hybridized population. Acoustic analyses showed that, for both sexes, calls have species-specific characteristics while hybrids have intermediate acoustic features compared to their parental species. Playback experiments showed that despite their vocal differences, both species interact and reply to each other. Remarkably, incubating Yelkouan and hybrid individuals resulted in equal intra-sex responses to either species while incubating Balearic birds led to lower territorial responses to Yelkouan than to conspecific calls. Moreover, incubating Balearic males less readily responded to same-sex Yelkouan calls than Balearic females. These results may have fitness consequences: Yelkouan birds, and especially males, would be more likely to win same-sex disputes against Balearic incubating birds than against Yelkouan incubating birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号