共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: A five-year study was conducted to identify the effects of road salt intrusion on the water chemistry of Pinhook Bog following operation of an uncovered salt storage pile adjacent to the bog for ten years. A distinct pattern of elevated salt concentrations was observed in the interstitial waters of the surface peat that corresponded to observed alterations in the bog vegetation. Yearly mean salt concentrations as high as 468 mg/l sodium and 1215 mg/l chloride were recorded in the plant root zone of the peat mat. The salt concentrations decreased significantly each year from 1979 to 1981 throughout the impacted area. Some increases of a lesser magnitude occurred in 1982 and 1983. Analysis of salt movements suggested that vertical transport by water movement was responsible for concentration changes. The major declines in salt levels occurred in the spring following snowmelt and heavy precipitation events. Evapotranspiration during periods of drought resulted in the gradual increases in surface peat salt concentrations. Diverted highway runoff was shown to be the major continuing source of sodium chloride contamination and was the likely source of the elevated calcium, magnesium, potassium, bicarbonate, and pH levels also observed in the impacted area. 相似文献
2.
Mark A. Hooker Wendy E. Alexander 《Journal of the American Water Resources Association》1998,34(3):497-505
ABSTRACT: This paper computes estimates of the demand for surface irrigation water directly from disaggregated profit functions for fields in the San Joaquin Valley of California. It finds that treating delivered surface water and pumped ground water as separate, imperfectly substitutable inputs to production matters a great deal. We find substantial ranges of inelastic demand for delivered water, and thresholds across which demand then becomes highly elastic. The results imply that moves toward freer water markets could lead to large quantities reallocated from agriculture to urban uses in the Western U.S., but would require large price increases and would induce extensive ground water mining and major changes in cropping patterns. While these results are dependent on our particular model and simplifying assumptions, evidence exists that they may be robust. 相似文献
3.
Richard C. Kattelmann Neil H. Berg John Rector 《Journal of the American Water Resources Association》1983,19(3):395-402
The Sierra Nevada produces over 50 percent of California's water. Improvement of water yields from the Sierra Nevada through watershed management has long been suggested as a means of augmenting the state's water supply. Vegetation and snowpack management can increase runoff from small watersheds by reducing losses due to evapotranspiration, snow interception by canopy, and snow evaporation. Small clearcuts or group selection cuts creating openings less than half a hectare, with the narrow dimension from south to north, appear to be ideal for both increasing and delaying water delivery in the red fir-lodgepole pine and mixed-conifer types of the Sierra west slope. Such openings can have up to 40 percent more snow-water equivalent than does uncut forest. However, the water yield increase drops to 1/2-2 percent of current yield for an entire management unit, due to the small number of openings that can be cut at one time, physical and management constraints, and multiple use/sustained yield guidelines. As a rough forecast, water production from National Forest land in the Sierra Nevada can probably be increased by about 1 percent (0.6 cm) under intensive forest watershed management. Given the state of reservoir storage and water use in California, delaying streamflow is perhaps the greatest contribution watershed management can make to meeting future water demands. 相似文献
4.
Alex Pupacko 《Journal of the American Water Resources Association》1993,29(2):283-290
ABSTRACT: Historical records of streamflow for an eastward- and a westward-draining stream in the northern Sierra Nevada have been analyzed for evidence of changes in runoff characteristics and patterns of variability. A trend of increasing and more variable winter streamflow began in the mid-1960s. Mean monthly streaniflow during December through March was substantially greater for water years 1965–1990 compared to water years 1939–1964. Increased winter and early-spring streamflow during the later period is attributed to small increases in temperature, which increase the rain-to-snow ratio at lower altitudes and cause the snowpack to melt earlier in the season at higher altitudes. The timing of snowmelt runoff on the western slope of the Sierra Nevada is more sensitive than it is on the eastern slope to changes in temperature, owing to predominantly lower altitudes on the west side. This difference in sensitivity suggests that basins on the east side of the Sierra Nevada have a more reliable water supply (as snow storage) than western-slope basins during warming trends. 相似文献
5.
Lowell F W. Duell 《Journal of the American Water Resources Association》1994,30(5):841-859
ABSTRACT: The sensitivity of streamflow to climate change was investigated in the American, Carson, and Truckee River Basins, California and Nevada. Nine gaging stations were used to represent streamflow in the basins. Annual models were developed by regressing 1961–1991 streamflow data on temperature and precipitation. Climate-change scenarios were used as inputs to the models to determine streamflow sensitivities. Climate-change scenarios were generated from historical time series by modifying mean temperatures by a range of +4°C to—4°C and total precipitation by a range of +25 percent to -25 percent. Results show that streamflow on the warmer, lower west side of the Sierra Nevada generally is more sensitive to temperature and precipitation changes than is streamflow on the colder, higher east side. A 2°C rise in temperature and a 25-percent decrease in precipitation results in stream-flow decreases of 56 percent on the American River and 25 percent on the Carson River. A 2°C decline in temperature and a 25-percent increase in precipitation results in streamflow increases of 102 percent on the American River and 22 percent on the Carson River. 相似文献
6.
D. G. Guerrant W. W. Miller C. N. Mahannah R. Narayanan 《Journal of the American Water Resources Association》1990,26(1):127-134
ABSTRACT: Little quantitative site-specific infiltration, runoff and sediment transport data for Tahoe Basin soils under varying storm events or stage of development are available. Modular (Ml), F-type (M2), Impact nozzle (M3), and Impact-Fan nozzle (M4) rainfall simulators were evaluated as to their practicality and ability to characterize infiltration for the Cagwin Soil Series within the Tahoe Basin. Three slope (0–15,15–30, >30%) and four plot conditions (natural with duff [P1], natural without duff [P2], disturbed without duff [P3], and disturbed with duff [P4]) were studied. The measured data were incorporated into a modified Philip's infiltration model and multiple non-linear regression analyses were used to examine relationships between method, slope, plot condition, and infiltration characteristics.t Simulation methods Ml and M4 produced statistically similar (P=0.01) infiltration data, as did M2 and M3 which produced lower infiltration rates. All were found suitable for use in Sierra Nevada watersheds. Ml was considered most practical. Slope had negligible effect on infiltration. The plot condition was found to significantly influence infiltration, and the effect of each plot condition was significantly different. Final infiltration rates ranged from 4.7 to 6.2 cm/hr. Thus, the Cagwin soil demonstrated moderate to high infiltration rates even when exposed to extreme storm conditions (8–10 cm/hr). 相似文献
7.
Kennith E. Foster K. James DeCook 《Journal of the American Water Resources Association》1986,22(5):753-757
ABSTRACT: Groundwater pumping constitutes approximately 100 percent of the water supply in the Tucson Active Management Area (AMA), Arizona. The current annual overdraft approaches 250,000 acre-feet, but the goal of the AMA is to eliminate the overdraft by the year 2025. Urban water reuse, if implemented by only 30 percent of the area's projected population, would reduce the annual ground-water overdraft by 25,000 acre-feet. 相似文献
8.
Steve A. Mizell Richard H. French 《Journal of the American Water Resources Association》1995,31(3):447-461
ABSTRACT: Historically ephemeral washes in the Las Vegas Valley have become perennial streams in the urbanized area, and the primary source of these perennial flows appears to be the overirrigation of ornamental landscaping and turf. Overirrigation produces direct runoff to the washes via the streets and results in high ground water levels in some areas. Elevated ground water levels result in discharge to the washes because of changes in the natural balance of the hydrologic system and construction site and foundation dewatering. In recognition of the resource potential of these flows within the Las Vegas Valley, of the potential for dry weather flows to convey pollutants from the Valley to Lake Mead, and of the need to characterize dry weather flows under the stormwater discharge permit program, the quantity and quality of dry weather flow in Flamingo Wash was investigated during the period September 1990 through May 1993. This paper focuses on the resource potential of the flow (quantity and quality) as it relates to the interception and use of this water within the Valley. Economic and legal issues associated with the interception and use of this resource are not considered here. 相似文献
9.
Charles R. Kratzer William Dritschilo Lee J. Hannah Marlene A. Broutman 《Journal of the American Water Resources Association》1985,21(4):565-572
ABSTRACT: An input-output model was developed to predict changes in Salton Sea salinity and water level until the year 2000 due to proposed water conservation efforts and geothermal and solar pond energy developments. The model SALINP provided good agreement with the observed salinities for 1960–80. While SALINP was not overly sensitive to one-year changes in any of the major inputs, a change in the historical means of the Imperial Valley runoff and evaporative loss inputs produced a significant effect on future predictions. The proposed water conservation measures caused the predicted Salton Sea salinity for 2000 to greatly exceed 40,000 ppm, the level at which adverse effects to wildlife are believed to occur. The possible geothermal development also produced predicted salinities considerably above 40,000 ppm. The salinity predictions for solar ponds by themselves and in conjunction with geothermal development were below 45,000 ppm for 2000. The solar pond and geothermal combination also resulted in a predicted lowering of the “natural” water level by 5 to 7 feet by 2000. 相似文献
10.
David Changnon Thomas B. McKee Nolan J. Doesken 《Journal of the American Water Resources Association》1991,27(5):733-743
ABSTRACT: The spatial and temporal variability of hydroclimatic elements were investigated in the central and northern Rocky Mountains (Colorado, Idaho, Montana, Utah, and Wyoming) during the 1951–1985 period. The three hydroclimatic elements studied were total water-year (October 1-September 30) streamflow (ST), winter (October 1-March 31) accumulated precipitation (PR), and April 1 snowpack (SN). An analysis of 14 virgin watersheds showed wide spatial djfferences in the temporal variability of SN, PR, and ST, and these were found to be caused largely by basin exposure to moist air flows. The more stable (low variability) basins were those exposed to prevailing northerly to westerly flow, while unstable (high variability) basins were exposed to occasional southwesterly to southeasterly moist flow. Snowpack was the better indicator of ST in 11 of the 14 watersheds, explaining 37 to 87 percent of the ST variance. Analysis of the spatial variability, based on all SN and PR data from across the study area, revealed 11 discrete climatic regions. Both SN and PR exhibited coherent regions of stable and unstable temporal variability. The average variability between stable and unstable regions differed by a factor of two, and the differences were best explained by the exposure of the mountain barrier to moist air flows. 相似文献
11.
David W. Layton 《Journal of the American Water Resources Association》1978,14(1):133-143
Abstract: There are four known geothermal resource areas in the Imperial Valley that have a combined potential of over 4,000 megawatts of electrical energy for 25 years. Water resources available to support geothermal enerfy development are imprted Colorado River water, agricultural waste waters, Salton Sea water, and groundwater. In addtion, geothermal power plants can produce their own cooling water from steam condensate. Nevertheless, the relatively high water requirements of geothermal facilities along with a series of real and potential constraints may cause water supply dilemmas involving both the acquistion and use of cooling water. Important constraints are institutional policies, water supply costs, technical problems, and impacts upon the Salton Sea. These constranits and related dilemmas are examined in light of relevanty information on the valley's water resources, geothermal resources and energy technologies, cooling water requrements, and water supply options. 相似文献
12.
Richard H. Hawkins John H. Judd 《Journal of the American Water Resources Association》1972,8(6):1246-1252
The use of salt to melt ice and snow on streets and roads has become prevalent throughout the Northeast. Several states apply as much as 20 tons per lane-mile. Salt runoff may be sorted in various locations within the hydrologic system. Eventually the salt reaches streams and lakes. In Meadowbrook, it was observed that the chloride content reached a high of 11,000 ppm in December 1969. The runoff from the watershed was emitted in several surges. Chloride concentrations declined with the onset of summer, but still remained high, suggesting that some of the salt applied during the past winter appeared in the summer stream flow. Salt runoff entering a small lake, flowed directly to the lake bottom. The buildup of high density saline water in the lower portion of the lake prevented complete mixing in the spring. Incomplete mixing led to anoxic conditions in the lower lake strata. The population of bent hic fauna of the lake was changed by the flow of salt water into the lake. From a total of 10 species of dipteran larva and oligochaetes, only 4 species of the latter remained. 相似文献
13.
Robert F. Kaufmann James D. Bliss 《Journal of the American Water Resources Association》1978,14(6):1314-1330
ABSTRACT: Principal U.S. phosphate production is from central Florida where mining, processing, and waste disposal practices intimately associate the industry with water resouces. Available radium-226 data from 1966 and from 1973–1976 in mined and unmined mincralized areas and nonmineralized areas in the primary study area in Polk, Hardee, Hillsborough, Manatee, and De Soto counties were studied using log-normal probability plots and nonparametric statistical tests for significant difference as functions of time, depth, and location. Plots of radium in the water table and Floridan aquifers for mineralized and nonmineralized areas indicate that neither phosphate mineralization nor the industry is a probable factor. For the Lower Floridan aquifer, three separate radium populations are indicated with geometric means of 0.7, 3, and 10 pCi/1. Geometric mean radium-226 content of the water table aquifer is 0.17 pCi/1. Radium in the Floridan aquifer in Manatee and Sarasota Counties is elevated relative to that in the water table and in other areas of Florida. For Sarasota County, geometric mean radium content of the water table is 15 pCi/l versus 7.5 pCi/l in the Floridan. Potential sources include shallow phosphate sediments and monazite sands and possibly crystalline basement rocks or other strata unrelated to phosphatic zones of current economic interest. The existing radium-226 data base is rather marginal in terms of number and spatial distribution of analyses, particularly for the water table and Upper Floridan aquifer. Existing radium data do not substantiate widespread contamination of ground water as a result of the phosphate industry. However, local contamination associated with specific operations has occurred. 相似文献
14.
L. Donald Duke Paul G. Beswick 《Journal of the American Water Resources Association》1997,33(4):825-838
ABSTRACT: Pollutants in urban storm water runoff, a significant and increasing fraction of pollutants in some waters of the U.S., originate from multiple activities. The industrial sector, one source category, is subject to federal and state-level storm water pollution prevention regulations, primarily General NPDES Permits that rely heavily on facility operators to identify themselves and develop appropriate site-specific pollutant controls. Degree of compliance is not readily determined and enforcement is inhibited because no publicly-available inventories contain data necessary to comprehensively identify facilities required to comply. This research evaluates the first stage of compliance, facility self-identification, concentrating on the motor-vehicle, transportation industry category using data at three scales: statewide, regional, and local or watershed. Data for California statewide and for the Los Angeles region show about 8 percent to 15 percent of motor-vehicle transportation facilities have complied with first-stage requirements. However, facility-specific evaluation in one Los Angeles County watershed suggests less than 50 percent of facilities in the industry conduct industrial activities of the kind covered by regulations; others need not comply. Results show strong variation by industry category. Second-stage compliance, follow-up reporting, is also evaluated for the Los Angeles region. About 17 percent to 34 percent of facilities completing first-stage requirements have also completed second-stage requirements. 相似文献
15.
Robert J. Gilliom Daphne G. Clifton 《Journal of the American Water Resources Association》1990,26(1):11-24
ABSTRACT: Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks. 相似文献
16.
Thomas J. Myers Sherman Swanson 《Journal of the American Water Resources Association》1991,27(4):667-677
ABSTRACT: The quality of stream habitat varies for a variety of natural and anthropogenic reasons not identified by a condition index. However, many people use condition indices to indicate management needs or even direction. To better sort natural from livestock influences, stream types and levels of ungulate bank damage were regulated to estimates of aquatic habitat condition index and stream width parameters in a large existing stream inventory data base. Pool/riffle ratio, pool structure, stream bottom materials, soil stability, and vegetation type varied significantly with stream type. Pool/riffle ratio, soil and vegetation stability varied significantly with ungulate bank damage level. Soil and vegetation stability were highly cross-correlated. Riparian area width did not vary significantly with either stream type or ungulate bank damage. Variation among stream types indicates that riparian management and monitoring should be stream type and reach specific. 相似文献
17.
D. A. Higgins A. R. Tiedemann T. M. Quigley D. B. Marx 《Journal of the American Water Resources Association》1989,25(6):1131-1149
ABSTRACT: Streamflow data for water years 1978–84 were evaluated to identify streamflow characteristics for 13 small watersheds (0.46–7.00 mi2) in the Blue Mountains of eastern Oregon and to determine differences among grazing intensities and vegetation types. The ranges for mean annual water yields, peak flows, and 7-day low flows for the 13 watersheds were 5.5–28.1 inches, 2.0–34.7 cfsm, and 0.006–0.165 cfsm, respectively. Two classes of vegetation were evaluated: (1) western larch-Douglas-fir (nine watersheds) and (2) other (four watersheds representing fir-spruce, lodgepole pine, ponderosa pine, and mountain meadow). The means for annual peak flows and the slopes of the flow.duration curve were significantly different (p=0.05) for the two vegetation classes; differences in mean annual water yield were marginallysignificant(0.05< p <0.10). After they were adjusted for precipitation, the means for annual water yield, peak flows, and slopes of the flow-duration curve were significantly different for the two vegetation classes; differences in the means for annual 7-day low flows were marginally significant. The western larch-Douglas-fir group had somewhat lower water yields but, overall, tended to have more favorable streamfiow characteristics including lower peak flows, higher low flows, and more evenly distributed flow regimes (flatter flow-duration curves) than the “other” class. Four levels of grazing intensity had no effect on streamilow characteristics. 相似文献
18.
P. A. Glancy A. S. Van Denburgh S. M. Born 《Journal of the American Water Resources Association》1972,8(6):1157-1172
The Truckee River heads in the Sierra Nevada at Lake Tahoe, and terminates in Pyramid Lake. During the 1969 water year, flow about 9 miles upstream from the mouth (974,000 acre-ft) was almost four times the long-term average, due mainly to heavy winter rains and spring snowmelt. A short period of low-altitude rainfall produced the highest concentrations of suspended sediment, whereas a much longer subsequent period of snowmelt yielded a much greater total quantity of material. The upper 90 percent of the basin yielded about 260 acre-feet (630,000 tons) of sediment at the Nixon gage, whereas an estimated 2,800 acre-feet (6.8 million tons) was contributed by erosion of about 200 acres of river bank below the gage. Solute content at the gage ranged from 80 to 450 mg/l, dominated by calcium, sodium, and bicarbonate, plus silica in the most dilute snowmelt and chloride in the most concentrated low flows. Solute load totaled about 130,000 tons, of which the principal constituents in Pyramid Lake-sodium plus equivalent bicarbonate and chloride-amounted to almost 40,000 tons. The total solute load during a year of average flow may be 45,000-55,000 tons, including 18,000-22,000 tons of principal lake constituents. 相似文献
19.
William S. Scott 《Journal of the American Water Resources Association》1979,15(6):1733-1742
ABSTRACT: High concentrations of chloride and sodium were found in the bottom layers of a new flood control reservoir at the beginning of winter thaw periods. The reservoir had a number of significant downstream impacts. After short thaw periods, discharge from the bottom of the reservoir tended to cause higher salt concentrations downstream in comparison with upstream sites. During long thaw periods or when large quantities of rain fell, downstream salt concentrations were considerably less than upstream values. Average chloride and sodium content of soil at the bottom of the reservoir more than doubled as a result of impounding runoff waters for one winter. 相似文献
20.
ABSTRACT: Stable isotopes of deuterium and oxygen-18 of surface and ground water, together with anion concentrations and hydraulic gradients, were used to interpret mixing and flow in ground water impacted by artificial recharge. The surface water fraction (SWF), the percentage of surface water in the aquifer impacted via recharge, was estimated at different locations and depths using measured deuterium/hydrogen (DIH) ratios during the 1992, 1993, and 1994 recharge seasons. Recharged surface water completely displaced the ground water beneath the recharge basins from the regional water table at 7.60 m to 12.16 m below the land surface. Mixing occurred beneath the recharge structures in the lower portions of the aquifer (>12.16 m). Approximately 12 m down-gradient from the recharge basin, the deeper zone (19.15 m depth) of the primary aquifer was displaced completely by recharged surface water within 193, 45, and 55 days in 1992, 1993, and 1994, respectively. At the end of the third recharge season, recharged surface water represented ~50 percent of the water in the deeper zone of the primary aquifer ~1000 m downgradient from the recharge basin. A classic asymmetrical distribution of recharged surface water resulted from the recharge induced horizontal and vertical hydraulic gradients. The distribution and breakthrough times of recharged surface water obtained with stable isotopes concurred with those of major anions and bromide in a tracer test conducted during the 1995 recharge season. This stable isotope procedure effectively quantified mixing between surface and ground water. 相似文献