首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: A Helley-Smith pressure differential bedload sampler was used to measure bedload transport at consecutive riffle sections of a riffle-pool-riffle sequence on Bambi Creek, a small (154 ha), second-order stream on Chichagof Island, Alaska, during four storms over a 2-year period. Maximum bedload transport rate measured was 4920 kg/h at a streamflow of 2.35 m3/s corresponding to a storm having a 5-year return interval. Transport of larger sediment (> 8 mm) varied systematically with streamflow at the two sampling locations. At flows up to approximately bankfull, transport of large sediment was greatest at the upstream site; at flows above bankfull, transport of large sediment was greatest at the downstream site. The net import of large sediment to the pool during moderate stormflows and net export of large sediment from the pool during flows above bankfull may be related to a “convergence” or “reversal” of competence between the upstream riffle and subsequent pool at flows approximating bankfull stage. Cross-sections monitored within the study reach indicate that stormflows resulted in net filling of the riffle sections and net scour of the pool; periods of low streamflow resulted in net scour of the riffles and net filling of the pooL  相似文献   

2.
The transport of bedload and suspended sediments and particulate organic matter was evaluated in Huntington Creek, Utah, during a controlled release of water from Electric Lake Reservoir from August 7–10, 1979. Effects of the release on channel geometry and riffle composition also were assessed. Bedload transport rates increased from zero to 1,650 and 1,500 kg/hr at two cross sections as discharge was increased from 0.4 to 4.9 m3/s; transport rates then decreased erratically as discharge was held constant. Cross section measurements and sediment size analysis indicate that flows were insufficient to transport riffle sediments. Rapid increases in the transport rates of suspended sediments and particulate organic matter also occurred during rising discharge and again decayed when discharge became constant. Suspended sediment concentrations for samples obtained with an automatic pumping sampler were generally less than those found for samples obtained with a DH-48 sampler. Biological measurements still are needed to determine if such a release can improve fisheries habitat by removing fine sediments.  相似文献   

3.
CO2 capture and geological storage (CCS) is considered as a viable option to mitigate greenhouse gas emissions during the transition phase towards the use of clean and renewable energy. This paper concentrates on the transport of CO2 between source (CO2 capture at plants) and sink (geological storage reservoirs). In the cost estimation of CO2 transport, the pipeline diameter plays an important role. In this respect, the paper reviews equations that were used in several reports on CO2 pipeline transport. As some parameters are not taken into account in these equations, alternative formulas are proposed which calculate the proper inner diameter size based on flow rate, pressure drop per unit length, CO2 density, CO2 viscosity, pipeline material roughness and topographic height differences (the Darcy–Weisbach solution) and, in addition, on the amount and type of bends (the Manning solution). Comparison between calculated diameters using the reviewed and the proposed equations demonstrate the important influence of elevation difference (which is not considered in the reviewed equations) and pipeline material roughness-related factor on the calculated diameter. Concerning the latter, it is suggested that a Darcy–Weisbach roughness height of 0.045 mm better corresponds to a Manning factor of 0.009 than higher Manning values previously proposed in literature. Comparison with the actual diameter of the Weyburn pipeline confirms the accuracy of the proposed equations. Comparison with other existing CO2 pipelines (without pressure information) indicate that the pipelines are designed for lower pressure gradients than 25 Pa/m or for (future) higher flow rates. The proposed Manning equation is implemented in an economic least-cost route planner in order to obtain the best economic solution for pipeline trajectory and corresponding diameter.  相似文献   

4.
ABSTRACT: Hydrologic responses to logging with skidders and responses to logging with a cable yarder are compared. After a 23-year calibration with an undisturbed control catchment, mixed stands of shortleaf pine (Pinus echinata Mill.) and hardwoods were clearfelled on two small catchments in the hilly Coastal Plain of north Mississippi and observed for five years. Runoff increased 370 mm (skidded) and 116 mm (yarded) during the first year with 1876 mm of rainfall, and 234 mm (skidded) and 228 mm (yarded) during the second year when 1388 mm of precipitation equaled the calibration mean. Sediment concentrations for the yarded catchment during the first two years averaged 641 and 1,629 mg L?1, respectively, and yields were 6,502 and 12,086 kg ha?1. Compared to calibration means of 74 mg L?1 and 142 kg ha?1, these extreme values can be attributed largely to transport of sediment stored in the channel and to erosion of subsurface flow paths, which was exacerbated by high flow volumes. During the first year, the concentration (231 mg L?1) and yield (2,827 kg ha?1) for the control catchment also exceeded the calibration means. However, concentrations (134 mg L?1) and yields (1,806 kg ha?1) for the skidded catchment were about 40 percent lower than for the control catchment during the first year, and were higher than those for the control only during the second year. Because deep percolation was limited and because rainfall was unusually high, increases in flows and sediment concentrations and yields probably approximate maximum responses to clearcut harvesting in the uplands of the southern Coastal Plain.  相似文献   

5.
Maintenance of soil organic carbon (SOC) is important for sustainable use of soil resources due to the multiple effects of SOC on soil nutrient status and soil structural stability. The objective of this study was to identify the changes in soil aggregate distribution and stability, SOC, and nitrogen (N) concentrations after cropland was converted to perennial alfalfa (Medicago sativa L. Algonguin) grassland for 6 years in the marginal oasis of the middle of Hexi Corridor region, northwest China. Significant changes in the size distribution of dry-sieving aggregates and water-stable aggregates, SOC, and N concentrations occurred after the conversion from crop to alfalfa. SOC and N stocks increased by 20.2% and 18.5%, respectively, and the estimated C and N sequestration rates were 0.4 Mg C ha−1 year−1 and 0.04 Mg N ha−1 year−1 following the conversion. The large aggregate (>5 mm) was the most abundant dry aggregate size fraction in both crop and alfalfa soils, and significant difference in the distribution of dry aggregates between the two land use types occurred only in the >5 mm aggregate fraction. The percentage of water-stable macroaggregates (>2, 2–0.25 mm) and aggregate stability (mean weight diameter of water-stable aggregates, WMWD) were significantly higher in alfalfa soils than in crop soils. There was a significant linear relationship between total SOC concentration and aggregate parameters (mean weight diameter) for alfalfa soils, indicating that aggregate stability was closely associated with increased SOC concentration following the conversion of crops to alfalfa. The SOC and N concentrations and the C/N ratio were greatest in the >2 mm water-stable aggregates and the smallest in the 0.25–0.05 mm aggregates in crop and alfalfa soils. For the same aggregate, SOC and N concentrations in aggregate fractions increased with increasing total SOC and N concentrations. The result showed that the conversion of annual crops to alfalfa in the marginal land with coarse-texture soils can significantly increase SOC and N stocks, and improve soil structure.  相似文献   

6.
Using a combination of experimental (petrophysical and mineralogical) methods, the effects of high-pressure CO2 exposure on fluid transport properties and mineralogical composition of two pelitic caprocks, a limestone and a clay-rich marl lithotype have been studied. Single and multiphase permeability tests, gas breakthrough and diffusion experiments were conducted under in situ p/T conditions on cylindrical plugs (28.5 mm diameter, 10–20 mm thickness).The capillary CO2 sealing efficiency of the initially water-saturated sample plugs was found to decrease in repetitive gas breakthrough experiments on the same sample from 0.74 to 0.41 MPa for the limestone and from 0.64 to 0.43 MPa for the marl. Helium breakthrough experiments before and after the CO2 tests showed a decrease in capillary threshold (snap-off) pressure from 1.81 to 0.62 MPa for the limestone.Repetitive CO2 diffusion experiments on the marlstone revealed an increase in the effective diffusion coefficient from 7.8 × 10?11 to 1.2 × 10?10 m2.Single-phase (water) permeability coefficients derived from steady-state permeability tests ranged between 7 and 56 nano-Darcy and showed a consistent increase after each CO2 test cycle. Effective gas permeabilities were generally one order of magnitude lower than water permeabilities and exhibit the same trend. XRD measurements performed before and after exposure to CO2 did not reveal any distinct change in the mineral composition for both samples. Similarly, no significant changes were observed in specific surface areas (determined by BET) and pore-size distributions (determined by mercury injection porosimetry). High-pressure CO2 sorption experiments on powdered samples revealed significant CO2 sorption capacities of 0.27 and 0.14 mmol/g for the marlstone and the limestone, respectively.The changes in transport parameters in the absence of detectable mineral alterations may be explained by carbonate dissolution and further precipitation along a pH profile across the sample plug which would not be subject to quantitative mineral alteration.  相似文献   

7.
Total suspended solids (TSS) and total phosphorus (TP) have been shown to be strongly correlated with turbidity in watersheds. High‐frequency in situ turbidity can provide estimates of these potential pollutants over a wide range of hydrologic conditions. Concentrations and loads were estimated in four western Lake Superior trout streams from 2005 to 2010 using regression models relating continuous turbidity data to grab sample measures of TSS and TP during differing flow regimes. TSS loads estimated using the turbidity surrogate were compared with those made using FLUX software, a standard assessment technique based on discharge and grab sampling for TSS. More traditional rating curve methodology was not suitable because of the high variability in the particulates vs. discharge relationship. Stream‐specific turbidity and TSS data were strongly correlated (r2 = 0.5 to 0.8; p < 0.05) and less so for TP (r2 = 0.3 to 0.7; p < 0.05). Near‐continuous turbidity monitoring (every 15 min) provided a good method for estimating both TSS and TP concentration, providing information when manual sample collection was unlikely, and allowing for detailed analyses of short‐term responses of flashy Lake Superior tributaries to highly variable weather and hydrologic conditions while the FLUX model typically resulted in load estimates greater than those determined using the turbidity surrogate, with 17/23 stream years having greater FLUX estimates for TSS and 18/23 for TP.  相似文献   

8.
Abstract: This paper describes the construction and testing of a device for pumping water samplers that collects suspended sediment samples by moving the intake vertically to keep it at the same proportion of flow depth. The device uses a simple sprocket mechanism that can be mounted vertically on the downstream side of culverts and bridge pilings to protect against damage from floating debris during storms. Suspended sediment samples collected from an urban stream with the depth‐proportional device were compared with manual samples taken with a depth‐integrated sampler. Scatter in the relationship between pumped and manual samples (R2 = 0.76) are probably explained by horizontal variability in concentrations, poor mixing associated with lateral sediment inputs from construction site erosion, the downstream orientation of the intake, and the failure of the concentration at 60% of the flow depth to match the average vertical concentration.  相似文献   

9.
This study evaluated the effectiveness of two application rates of a coral-derived surfacing material for both traffic and nontraffic road conditions using simulated rainfall (110–120 mm h−1 for 30–90 min) on 0.75-m (wide) × 5.0-m (long) plots of similar slope (roughly 0.1 m m−1). The coral is a locally available material that has been applied to unpaved roads surfaces on Schoffield Barracks, Oahu, Hawaii (USA), where this experiment was conducted. The simulations show that compared with a bare control plot, the coral-based surface application rates of 80 and 160 kg m−2 (equivalent to only 10- and 20-mm thicknesses) reduced road sediment production by 75% and 95%, respectively, for nontraffic conditions. However, after two passes of the research vehicle during wet conditions, sediment production rates for the two coral treatments were not significantly different from those on the bare road plots. The overall effectiveness of the coral-derived surfacing material is unsatisfactory, primarily because the on-road surface thickness associated with the application rates tested was too small. These rates were selected to bracket those applied to training roads in the study area. Furthermore, the composition of the coral-based material does not facilitate the development of a sealed, erosion-resistant surface. When applied at the low rates tested, the coral material breaks down under normal traffic conditions, thereby losing its ability to counter shearing forces exerted by overland flow on long hillslopes where erosion measures are most needed. These simulations, combined with observations on roads in the study area, indicate that this material is not an appropriate road surfacing material for the site—at least for the low application rates examined. These results are preliminary; extended testing of higher applications rates at the hillslope scale under natural climate and traffic conditions is needed to better judge the effectiveness of this material over time.  相似文献   

10.
ABSTRACT: Variability in bedload-transport rates during constant water discharge is an inherent part of the bedload-transport process. Although this variability has been measured extensively in the laboratory, similar information generally is not available from field measurements. During a four-day period of nearly constant water discharge, four sets of consecutively collected bedload samples, ranging from 43 to 120 samples, were obtained at the same cross channel location using a standard 65-pound Helley-Smith bedload sampler. When the measured transport rates are converted to dimensionless rates and plotted as cumulative frequency distributions, they show good agreement with a theoretical probability distribution function of rates derived for the case of ripples on dunes. The distributions show that during constant water discharge individual measured rates at a fixed point vary from near zero to four times the mean rate, and 60 percent of the sampled rates will be less than the mean. Because of the large variation in transport rates that occurs at every location in the cross section, many observations are required to establish an accurate estimate of the mean rate at any given location.  相似文献   

11.
Forest fires are common in Mediterranean environments and may become increasingly more frequent as the climate changes. Destruction of the forest cover and litter layer leads to greater overland flow and increased erosion rates. The greatest risk occurs during the first rainstorms following a major fire, so local authorities must act quickly to put erosion control methods in place in order to avoid excessive post-fire sediment loads in river channels. Deciding on which methods to use requires accurate knowledge of their impact on sediment load and an estimate of their cost efficiency. The objective of this study was to evaluate the efficiency of Log Debris Dams (LDDs) and a sedimentation basin for their effectiveness in trapping sediments. Paired sub-catchments were studied to quantify the amount of sediments trapped in stream channels by a series of LDDs and a sedimentation basin. Cost efficiency was evaluated for each of the measures as a function of the cost per unit volume of sediments trapped. In addition, grain size analyses were performed to characterise the nature of the sediments trapped. A third sediment trapping method, Log Erosion Barriers (LEBs) was evaluated more superficially than the first two and conclusions regarding this method are tentative. LDDs trapped a mean volume of 1.57 m3 per unit (median = 1.28 m3); mean LDD height was 105.4 cm (std. dev. = 21.9 cm), and mean height of trapped sediments was only 50.0 cm (std. dev. = 22.9 cm), showing that the traps were only half filled. Sediment height was limited by the presence of gaps between logs or branches that allowed runoff to flow through. Comparison of the textural characteristics of slope and trapped sediments showed distinct sorting: particles greater than 20 mm were not mobilised from the slopes during the study period, sediments in the medium to coarse sand size fractions were trapped preferentially by the LDDs, and sediments in the sedimentation basin were enriched by clay and silt sized (<0.050 mm) particles as coarser sediments were trapped upstream by the LDDs. Cost efficiency of LDDs was estimated at about 143 € m−3 for the LDDs and 217 € m−3 for the sedimentation basin at the time of sampling. The LDDs are therefore a cost effective method of trapping sediments, but they can only be used when pine trees or straight-trunked trees are locally available. In this case, they should be combined with LEBs, which had a cost efficiency estimated at about 250 € m−3. Installation of the LEBs had not been optimised and they have the advantage of trapping sediments on the slopes where they can continue to play an ecological role, so this method can give better results with more care. Sedimentation basins can be emptied if necessary and are useful in areas where pine trees are not available and where the site can be secured.  相似文献   

12.
Studies were conducted in a closed system recirculating research flume to evaluate the relative effects of high intensity rainfall on von Karman's universal constant and the sediment transport capacity of shallow flow. The tests in this study were conducted at flow depths of 0.3 ft and less with discharges less than 0.5 cfs. The point velocities in the flow were determined with a Pace CD-25 pressure transducer and an inclined manometer connected in parallel to a Pitot-static tube of the standard Prandtl design. Regression analyses were performed on the velocity data to determine the best fit dimensionless velocity curve on semilogarithmic paper. Von Karman's universal constant was then evaluated from the slope of the regression line. Point sediment samples were siphoned from the flow with a stainless steel-pipette sediment sampler. Sediment concentrations were found with a filtering technique. Sediment samples were taken with and without rainfall to evaluate the relative effect of the rainfall on the transport capacity of shallow flow.  相似文献   

13.
This study examines the use of bioretention as a strategy to reduce the thermal impact associated with urban stormwater runoff in developing cold water stream watersheds. Temperature and flow data were collected during 10 controlled runs at a bioretention facility located in Blacksburg, Virginia. It was determined that bioretention has the ability to reduce the temperature of thermally charged stormwater runoff received from an asphalt surface. Significant reductions in peak and average temperatures (p < 0.001) were observed. However, this facility was unable to consistently reduce the temperature below the threshold for natural trout waters in Virginia. The ability of bioretention to reduce runoff volume and peak flow rate also serves to reduce the hydrothermal impact. An average thermal pollution reduction of nearly 37 MJ/m3 was calculated using an adopted threshold temperature of 20°C. Based on the results of this study, it was concluded that properly designed bioretention systems have the capability to reduce the thermal impact of urban stormwater runoff on cold water stream ecosystems.  相似文献   

14.
In the present work, the thin layer drying kinetics of potato during natural convection solar drying was investigated experimentally. Cylindrical potato samples with length 50 mm and varying diameter of 8, 10 and 13 mm were dried in an in-house designed and fabricated laboratory scale mixed-mode solar dryer. Thirteen different thin-layer mathematical models were fitted to the experimental moisture ratio (MR) data. The obtained results indicated that the Modified Page model could satisfactorily describe the drying curve of potato cylinders with higher value of R2 and lower values of RMSE and χ2. The shrinkage parameter is incorporated in the analytical diffusion model to study the moisture transfer mechanism of potato cylinders. It was observed that the values of effective diffusion coefficient (Deff) and convective mass transfer coefficient (hm) are overestimated in the range of 85.02–90.27% and 39.11–45.11% for the range of sample diameter examined, without considering the shrinkage effect in the mass transfer analysis. A Multiphysics approach was adopted in this study to get insight into the drying behavior of potato cylinders in terms of food-moisture interactions during the solar drying process. The predicted results of MR are in close agreement with the experimental data. Moreover, the anisotropic behavior of shrinkage as well as the moisture distribution inside the potato cylinder was very well described by Multiphysics model.  相似文献   

15.
In the Mediterranean region the intensities and amounts of soil loss and runoff on sloping land are governed by rainfall pattern and vegetation cover. Over a two-year period (1998–1999), six wild species of aromatic and mellipherous plants (Thymus serpylloides subsp. Gadorensis, Thymus baeticus Boiss, Salvia lavandulifolia Vahl., Santolina rosmarinifolia L., Lavandula stoechas L. and Genista umbellata Poiret) were selected for erosion plots to determine their effectiveness in reducing water erosion on hillslopes of the Sierra Nevada Mountain (SE Spain). The erosion plots (including a bare-soil plot as control), located at 1,345 m in altitude, were 2 m2 (2 m × 1 m) in area and had 13% incline. The lowest runoff and soil erosion rates, ranging from 9 to 26 mm yr−1 and from 0.01 to 0.31 Mg ha−1 yr−1, respectively, over the entire study period, were measured under the Thymus serpylloides. Lavandula stoechas L. registered the highest rates among the plant covers tested, runoff ranging from 77 to 127 mm yr−1 and erosion from 1.67 to 3.50 Mg ha−1 yr−1. In the bare-soil plot, runoff ranged from 154 to 210 mm yr−1 and erosion from 4.45 to 7.82 Mg ha−1 yr−1. According to the results, the lowest-growing plant covers (Thymus serpylloides and Salvia lavandulifolia Vahl.) discouraged the soil erosion and runoff more effectively than did the taller and open medium-sized shrubs (Santolina rosmarinifolia L., Genista umbellata Poiret, Thymus baeticus Boiss and Lavandula stoechas L.). Monitoring allowed more direct linkage to be made between plant covers and the prevention of erosion, with implications for sustainable mountain agriculture and environmental protection.  相似文献   

16.
Water resources in the Yangtze River Estuary (YRE), which is the vital water supply for Shanghai, decreased by approximately 2.45 Gm3 in 2006, the second‐worst recorded drought year. A numerical model was developed to investigate the effects of this extreme drought on pollutant transport processes in the YRE. The model was calibrated against observations and displayed good agreement. Residence time, a critical hydrodynamic indicator, was implemented to indicate pollutant transport processes. Numerical experiments were conducted to examine the possibly drought‐induced influences. The model results demonstrated that the influences on pollutant transport processes varied spatially and temporally, and these influences could partly explain the observed temporal and spatial variations of total nitrate in 2006. The area most susceptible to drought is in the north branch with 2‐11 days' extension of residence time. As the drought occurred in both the high and normal water periods, its influences were more significant during the normal water period with saltwater intrusion into the north branch. The drought also introduced a pollutant transport lag in timescale of approximately five days by diminishing the seaward advection flux with freshwater discharge. In 2006, the magnified tidal influence during the drought contributed more than usual to structuring pollutant transport, as the pollutant transport processes were intensely associated with tidal flow and tidal cycle.  相似文献   

17.
Two intermittent streams on oak-hickory watersheds in southern Illinois were gaged with a V-notched weir and sampled with an automatic water sampler. For three years data were collected on flow volume and water quality. Flow volumes show large variations between years and watersheds. Samples were analyzed for Na+, K+, Ca++, Mg++, P, and NO-3. Water quality was consistently high, although there were significant differences between watersheds. A baseline for water quality has been established for comparison after one of the watersheds is clearcut at a later date.  相似文献   

18.
Real-time electrochemical measurements of corrosion rate were performed to evaluate the respective corrosion rates of one boiler waterwall material (SA210) and three boiler superheater materials (T22, P91 and 347H) while firing Utah Western bituminous, Illinois high-sulfur bituminous and Powder River Basin (PRB) sub-bituminous coals in a 1.5 MW pulverized coal-fired furnace. The raw average measured corrosion rates were very low, between 0.0003 and 0.016 mm/year (0.012 and 0.63 mils/year) for most materials under air- and oxy-fired conditions. For some high-sulfur conditions measured corrosion rates were as high as 0.72 mm/year (28 mils/year). Waterwall corrosion rates decreased consistently when converting from air- to oxy-firing while superheater corrosion rates generally increased, although they were less than twice the air-fired rate under most conditions. Corrosion rates for the lower alloyed materials (SA210 and T22) increased significantly during transients from reducing to oxidizing conditions. Measured increases in the corrosion rate of 347H material under high sulfur and low temperature conditions, and associated decrease in corrosion rate at higher temperatures on this alloy, were consistent with the formation of trisulphates in the superheater deposits. The increase of corrosion rate with increased metal temperatures was demonstrated, as was the consistently repeatable nature of the observed results.  相似文献   

19.
Taxodium distichum (L.) Rich.]. The study site, a swamp in St. Martin Parish, Louisiana, has received municipal wastewater for the last 40 years. Growth chronologies from 1920 to 1992 were developed from cross-dated tree core samples taken from treated and control sites with similar size and age classes. Mean diameter increment (DINC) and mean basal area increment (BAI) chronologies were constructed separately for each stand. These chronologies were then summarized by tree and stand into seven nine-year intervals resulting in three pretreatment intervals from 1926 to 1952 and four treatment intervals from 1953 to 1988. Significant differences in growth response between sites showed a consistent pattern of growth enhancement in the treated site coincident with the onset of effluent discharge. The ratio of treated to control baldcypress growth rates (computed from DINC) averaged 0.74 during the pretreatment period and 1.53 during the treatment period. Over the period of study, control DINC decreased from 77 mm to 29 mm/nine-year interval, while treatment DINC increased slightly from 40 mm to 47 mm/nine-year interval. Control BAI did not increase significantly and averaged 192 cm2/nine-year interval. There was a significant increase in treatment BAI from 129 to 333 cm2/nine-year interval over the period of record. These results clearly demonstrate sustained long-term baldcypress growth enhancement throughout 40 years of municipal effluent discharge.  相似文献   

20.
We present the results of theoretical studies of the pressure fluid flow fundamental characteristics in tube coalescers used in the treatment processes for oily wastewater. It is shown that three different regions of flow (wall sublayer, transition sublayer, and flow kernel), having their own hydrodynamic characteristics, are formed in a cross section of the tube coalescer. In the viscous wall sublayer (of thickness δ*), viscous frictional forces exceed inertial forces (Reδ* < 1), and “creeping flow” is observed. This region borders on the transition sublayer (of thickness δ** = δ*), in which inertial forces exceed viscous frictional forces (Reδ** > 1). For both laminar and turbulent flow, distribution laws of local velocities and velocity gradients along the pipe radius are obtained in each of the three regions. In the flow kernel, the linear distribution law of velocity gradients gives a square distribution law of velocities for both types of flow, but for the turbulent flow, the correction coefficients = β and = 2β ? 1 must be introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号