首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: This paper presents a methodology for the estimation of response functions of crops to irrigation and soil moisture. A system analysis framework is applied to describe the relationships involved. Two subsystems are distinguished, with the first one involving the relationship between irrigation decision variables and soil state variables, and the second involving the relationship between soil state variables and crop yield. A method for tracing and predicting soil moisture profile variations over time and depth is presented, and empirical estimates of the response function of grain sorghum to soil moisture are derived. In the specification of the response function the concept of “critical days” is applied with a “critical day” being defined as one where the soil moisture is depleted below a certain critical level. The paper provides empirical evidence for the usefulness of the approach  相似文献   

2.
ABSTRACT: Accurate assessment of preplanting soil moisture conditions is necessary for good agricultural management, and can have a significant influence on crop yield in the Texas Panhandle region. The Texas High Plains Underground Water Conservation District invests considerable time and money in developing a soil moisture deficit map each year in the hopes of achieving optimal use of irrigation water. Microwave sensors are responsive to surface soil moisture and, if used in this application, can provide timely and detailed information on root zone soil moisture. For this reason, an experiment was conducted in 1984 to evaluate the potential of aircraft-mounted passive microwave sensors. Microwave radiometer data were collected over a 2700 km2 area near Lubbock, Texas, with a processed resolution of 0.32 km2. These data were ground registered and converted to estimates of soil moisture using an appropriate model and land cover and soil texture information. Analyses indicate that the system provides an efficient means for mapping variations in soil moisture over large areas.  相似文献   

3.
ABSTRACT: Certain physical and chemical properties of soil vary with soil water content. The relationship between these properties and water content is complex and involves both the pore structure and constituents of the soil solution. One of the most economical techniques to quantify soil water content involves the measurement of electrical resistance of a dielectric medium that is in equilibrium with the soil water content. The objective of this research was to test the reliability and accuracy of fiberglass soil-moisture electrical resistance sensors (ERS) as compared to gravimetric sampling and Time Domain Reflectometry (TDR). The response of the ERS was compared to gravimetric measurements at eight locations on the USDA-ABS Walnut Gulch Experimental Watershed. The comparisons with TDR sensors were made at three additional locations on the same watershed. The high soil rock content (≥45 percent) at seven locations resulted in consistent overestimation of soil water content by the ERS method. Where rock content was less than 10 percent, estimation of soil water was within 5 percent of the gravimetric soil water content. New methodology to calibrate the ERS sensors for rocky soils will need to be developed before soil water content values can be determined with these sensors.  相似文献   

4.
5.
ABSTRACT Laboratory experiments were conducted to study effects of trickle emitter discharge rate on the distribution of soil moisture in a silty-clay loam soil. Both pulsed and continuous irrigation treatments were studied. A simulation model was used to evaluate the results obtained in the laboratory. The agreement between the predicted and measured soil moisture distribution patterns was quite good. For both pulsed and continuous applications, increasing trickle discharge rate resulted in a decrease in the horizontal component and an increase in the vertical component of the wetted soil profile. Compared to the continuous treatments, pulsed applications resulted in significant reduction in water loss below the root zone. Pulsed applications rates can replace continuous small discharge rates to reduce irrigation water runoff problems on heavy soils and with restricted infiltration allow the use of larger emitter orifices to decrease potential clogging of the trickle system.  相似文献   

6.
Large area soil moisture estimations are required to describe input to cloud prediction models, rainfall distribution models, and global crop yield models. Satellite mounted microwave sensor systems that as yet can only detect moisture at the surface have been suggested as a means of acquiring large area estimates. Relations previously discovered between microwave emission at the 1.55 cm wavelength and surface moisture as represented by an antecedent precipitation index were used to provide a pseudo infiltration estimation. Infiltration estimates based on surface wetness on a daily basis were then used to calculate the soil moisture in the surface 0–23 cm of the soil by use of a modified antecedent precipitation index. Reasonably good results were obtained (R2= 0.7162) when predicted soil moisture for the surface 23 cm was compared to measured moisture. Where the technique was modified to use only an estimate of surface moisture each three days an R2 value of 0.7116 resulted for the same data set. Correlations between predicted and actual soil moisture fall off rapidly for repeat observations more than three days apart. The algorithms developed in this study may be used over relatively flat agricultural lands to provide improved estimates of soil moisture to a depth greater than the depth of penetration for the sensor.  相似文献   

7.
ABSTRACT: Aircraft Observations of the surface temperature were made by measurements of the thermal emission in the 8-14 μm band over agricultural fields around Phoenix, Arizona. The diuranal range of these surface temperature measurnments were well correlated with the ground measurment of soil moisture in the 0-2 cm layer. The surface temperature indicating no moisture stress. These results indicate that for clear atmospheric conditions remoteley sensed sufrace temperatures can be a reliable indicator of soil moisture conditions and crop status.  相似文献   

8.
ABSTRACT: A model is developed for real-time operation of an irrigation reservoir with the objective of maximizing the value of multiple crop yields during a growing season. The model employs monthly additive and product forms of crop yield functions for dry matter and grain crops, respectively. The resulting nonlinear optimization model uses a log transform to reduce nonlinearities in the model. An application of the proposed model is compared to a common operating rule used in simulation models. The proposed model results were better in terms of net benefits from crop yields. The model uses GAMS (General Algebraic Modeling System) language. It requires an IBM-compatible microcomputer and is suitable for use by a reservoir manager.  相似文献   

9.
ABSTRACT: Snails, Goniobasis livescens (Menke), were exposed to acutely sublethal concentrations of p-nitrophenol and the lampricide, 3-triflourmethyl-4 nitrophenol(TFM), and then to acutely lethal thermal shocks. The same species were also exposed to acutely sublethal concentrations of zinc followed by exposure to acutely lethal concentrations of p-nitrophenol; and to acutely sublethal concentrations of TFM followed by exposure to acutely lethal concentrations of zinc. Brown trout, Salmo trutta, were exposed to acutely sublethal concentrations of TFM and then to an acutely lethal thermal shock. Results of these experiments indicate that prior exposure to acutely sublethal toxicant concentrations may reduce survival time for a subsequent exposure to acutely lethal concentrations of a second toxicant (e.g., snails exposed to Zn++ then p-nitrophenol) but neither prior or concomitant exposure to acutely sublethal toxicant concentrations insures that the median survival time for a lethal exposure will be significantly altered (e.g., snails exposed to 0.2 × 48 hour LC50 for TFM then Zn++). However, some acutely sublethal concentrations of a toxicant may significantly alter survival time of snails to a lethal concentration of a different toxicant (e.g., exposure to 0.4 × 48 hour LC50 TFM then a lethal dose of Zn++). The brown trout exposed to an acutely sublethal concentration of TFM and then an acutely lethal thermal shock did have significantly altered survival patterns.  相似文献   

10.
ABSTRACT: Spatial distribution of soil and water properties and the correlations between them and crop yield were determined for a natural rainfall environment. Hydraulic conductivity, soil texture, water retention, and soil-water flux were variables used to investigate their relationship to crop yield using multiple regression techniques. Variations in crop yields on a watershed with a 3 to 4 percent slope and moderately erosive soils were related to soil-water characteristics and soil properties along slope and with depth. Climatic conditions to sustain crop growth and yield ranged from inadequate soil water in 1983 to adequate soil water in 1984. Crop yield was predicted with models using both available and measured soil-water content. Available water content provided a better model for the prediction of water yield and does not require field measurements of actual soil-water content. Soil water holding capacity was more significant for predicting crop yield in soils with moderate to high silt content than infiltrability of water into the soil.  相似文献   

11.
ABSTRACT: Soil water was monitored by neutron scattering in six soils, three each within two drainage catenas in east-central Illinois, over a 15-month time span. The prairie soils have formed in: (1) 76–152 cm of silt loam, eolian sediments (bess) over glacial till (Catlin-Flanagan-Drummer catena), and (2) bess greater than 152 cm in thickness (Tama-Ipava-Sable catena). We characterized the water content of these soils over the total time span and for wet and dry climatic subsets, as an aid to potential irrigation decisions. Soils of the thin bess, C-F-D catena dried out to lower water contents and had greater soil water variability than did the thick bess soils. Under wet conditions, soil water contents in the two catenas were quite similar. Alleviation of surface and subsurface drying via irrigation would thus be more advantageous to yields on the C-F-D soils than on the T-I-S soils.  相似文献   

12.
ABSTRACT: Pesticide runoff from dormant sprayed orchards is a major water quality problem in California's Central Valley. During the past several years, diazinon levels in the Sacramento and San Joaquin Rivers have exceeded water quality criteria for aquatic organisms. Orchard water management, via post‐application irrigation, and infiltration enhancement, through the use of a vegetative ground cover, are management practices that are believed to reduce pesticide loading to surface waters. Field experiments were conducted in Davis, California, to measure the effectiveness of these management practices in reducing the toxicity of storm water runoff. Treatments using a vegetative ground cover significantly reduced peak concentrations and cumulative pesticide mass in runoff for first flush experiments compared with bare soil treatments. Post‐application irrigation was found to be an effective means of reducing peak concentrations and cumulative mass in runoff from bare soil treatments, but showed no significant effect on vegetated treatments.  相似文献   

13.
The project was designed to demonstrate the potential benefits of utilizing sewage sludge as a soil conditioner and fertilizer on Sassafras sandy loam soil. Aerobically digested, liquid sewage sludge was applied to the soil at rates of 0, 22.4, and 44.8 Mg of dry solids/ha for three consecutive years between 1978 and 1981. Groundwater, soil, and crop contamination levels were monitored to establish the maximum sewage solids loading rate that could be applied without causing environmental deterioration. The results indicate that application of 22.4 Mg of dry solids/ha of sludge is the upper limit to ensure protection of the groundwater quality on the site studied. Application rates at or slightly below 22.4 Mg of dry solids/ha are sufficient for providing plant nutrients for the dent corn and rye cropping system utilized in the study.  相似文献   

14.
ABSTRACT: A number of criteria can be used in the selection of an area for the irrigation disposal of secondary treated waste water. The inherent capacity of the surface soil to retain, or at least detain, the various nutrient ions passing through the profile in the percolating waters becomes the prime consideration in regions with shallow water tables or in Karst areas such as the Missouri Ozarks where the risk of ground water supply contamination is high. A comprehensive study of the nutrient renovation potential of several soils was undertaken at a proposed effluent irrigation site along the Ozark National Scenic Riverways in south central Missouri. The surface soil hydrology was evaluated employing selected soil water parameters. Exchange equilibria studies determined the retention capacity for Ca and Mg while the concentrations of other selected ions were analyzed in the soil water to measure their retention time and net removal. The movement of a bromine tracer was monitored as an index of the renovation capacity of these soils for the more mobile anions such as nitrate. Neutron activation analysis proved to be a useful tool in the water quality analyses. All surface soil profiles demonstrated some degree of nutrient renovation for the various nutrients studied.  相似文献   

15.
ABSTRACT: The avoidance response of groups of juvenile Atlantic menhaden, Brevoortia tyrannus, was evaluated by exposing test species to a range of simultaneous total residual chlorine (TRC) (0.00, 0.05, 0.10, and 0.15 mg/L) and elevated temperature (0, 2, 4, and 6°C) conditions simulating power plant discharges. This species was tested at both 15 and 20°C to determine possible effects of acclimation temperature on the avoidance response. These temperatures were selected to represent spring or fall thermal conditions when most East Coast power plant facilities initiate power plant chlorination in the spring or terminate the use of this biocide in the fall. An unbalanced 3-factor factorial design was used to develop response surface avoidance models at 15 and 20°C. The model developed at 15°C showed: (1) an increase in avoidance occurred at all δT conditions as TRC increased from 0.00 to 0.05 mg/L; (2) a greater degree of avoidance occured at TRC concentrations above 0.05 mg/L at all δT conditions; and (3) TRC was the most important term inflencing avoidance. The model for Atlantic menhaden at 20°C showed: 1) avoidance increased with increasing TRC concentration at each δT condition; (2) avoidance did not necessarily increase with increasing δT's at each TRC concentration; (3) greatest avoidance occured at 0°C δT and 0.15 mg/L TRC; and (4) TRC was the most important term influencing avoidance. There was a significant difference (p < 0.00001) between avoidance models at 15 and 20°C. However, when extreme conditions of 0.15 mg/L TRC and 0–6°δT were compared, the degree of avoidance responses (percent time in control area) was similar.  相似文献   

16.
ABSTRACT: Twenty-six aspen (Populus tremuloides Michx.), 20 subalpine fir (Abies lasiocarps (Hook.) Nutt.), and 20 Engelmann spruce (Pices engelmanil (Parry) Engelm.) of various sizes were cut under water and suspended in permanent reserviors at a northern Utah site. The reservoirs were asealed so that all water loss was due to consumption by the trees. Sap velocities, as computed from heat pulse velocities, were related to conducting areas of the tree trunks. Computed transpiration volumes were then correlated with actual water losses from the reservoirs. Coefficients of determination (R2) of 0.87, 0.86, and 0.82 were obtained for the fir, aspen, and sprucs, respectively. Reservoir water loss for each species for each season was then used to adjust a plant activity index for computing transpiration within ASPCON, a model describing the hydrology of aspen to conifer succession. The plant activity index reflects the variation in the capability of a plant community to transpire water over the year. Assumptions and limitations of the heat pulse velocity technique are also outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号