首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The proliferation of watershed databases in raster Geographic Information System (GIS) format and the availability of radar-estimated rainfall data foster rapid developments in raster-based surface runoff simulations. The two-dimensional physically-based rainfall-runoff model CASC2D simulates spatially-varied surface runoff while fully utilizing raster GIS and radar-rainfall data. The model uses the Green and Ampt infiltration method, and the diffusive wave formulation for overland and channel flow routing enables overbank flow storage and routing. CASC2D offers unique color capabilities to display the spatio-temporal variability of rainfall, cumulative infiltrated depth, and surface water depth as thunderstorms unfold. The model has been calibrated and independently verified to provide accurate simulations of catchment response to moving rainstorms on watersheds with spatially-varied infiltration. The model can accurately simulate surface runoff from flashfloods caused by intense thunderstorms moving across partial areas of a watershed.  相似文献   

2.
Understanding the processes causing herbicide transport to surface waters is crucial to determine mitigation options to reduce these losses. To this end, we investigated the atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) transport in three agricultural catchments (1.1-2.1 km2) in the watershed of Lake "Greifensee" (Switzerland). In 1999, atrazine application data were recorded for all three catchments. Time proportional samples were taken at a high temporal resolution at the catchment outlets. Extremely wet conditions caused large relative losses from the catchments, ranging between 0.6 and 3.5% of the amount applied. Most of the atrazine load was due to event-driven diffuse losses from the fields. Farmyard runoff contributed less but caused the highest concentrations (up to 31 microg L(-1)) in the brooks. The maximum concentrations due to diffuse losses varied between 1.2 and 8.2 microg L(-1) among the catchments. Despite different absolute concentration levels, the concentration time-series were very similar. It seems that the travel-times within the catchments were mainly controlled by the rainfall pattern with little influence of the catchment properties. These properties, however, caused the relative losses to vary by a factor of 6 between the catchments. This variability could be partly explained by differences in the connectivity of the fields to the brooks and by their hydrological soil properties. A comparison of the losses from the three catchments with those from the entire watershed of Lake Greifensee demonstrated that they were representative for the larger area. Hence, the study results provide a good data set to evaluate distributed models predicting herbicide losses.  相似文献   

3.
ABSTRACT: Genetic Programming (GP) is a domain‐independent evolutionary programming technique that evolves computer programs to solve, or approximately solve, problems. To verify GP's capability, a simple example with known relation in the area of symbolic regression, is considered first. GP is then utilized as a flow forecasting tool. A catchment in Singapore with a drainage area of about 6 km2 is considered in this study. Six storms of different intensities and durations are used to train GP and then verify the trained GP. Analysis of the GP induced rainfall and runoff relationship shows that the cause and effect relationship between rainfall and runoff is consistent with the hydrologic process. The result shows that the runoff prediction accuracy of symbolic regression based models, measured in terms of root mean square error and correlation coefficient, is reasonably high. Thus, GP induced rainfall runoff relationships can be a viable alternative to traditional rainfall runoff models.  相似文献   

4.
We present estimates of the volumetric storage capacities of currently drained upland depressions and catchment depressional specific storage and runoff storage indices for the Des Moines Lobe of Iowa (DML‐IA) subregion of the Prairie Pothole Region of North America. Storage capacities were determined using hydrologically enforced Light Detection and Ranging‐derived digital elevation models, and a unique geoprocessing algorithm. Depressional specific storage was estimated for each 12‐digit Hydrologic Unit Code (HUC12) watershed in the region from total catchment‐specific depressional storage volume and catchment area. Runoff storage indices were calculated using catchment depressional specific storage values and estimates of the amount of rainfall likely to fall within each watershed during sub‐annual and 1‐, 2‐, 5‐, and 10‐year 24‐h events. The 173,171 identified drained depressions in the DML‐IA can store up to 903.5 Mm3 of runoff. Most of this capacity is in depressions located in the north of the region. Specific storage varies from nearly 109 mm in the younger landscapes to <10 mm in older more eroded areas. For 95% of the HUC12 watersheds comprising the region, depressional storage will likely be exhausted by rainfall‐derived runoff in excess of a 1‐year 24‐h event. Rainfall amounts greater than a 5‐year 24‐h event will exceed all available depressional storage. Therefore, the capacity of drained depressions in the DML‐IA to mitigate flooding resulting from infrequent, but large, storm events is limited.  相似文献   

5.
ABSTRACT: Estimations of runoff volumes from urban areas can be made by the equation Q = a A σ(Pe– b), where Q is the runoff volume, a is the part of the total area A Contributing to runoff, Pe is the rainfall amount for a single event, and b is the initial rainfall losses. For the evaluation of a and b, rainfall/runoff measurements were made in five areas of sizes between 0.035 km2 and 1.450 km2. By linear regression analysis of rainfall volumes versus runoff volumes, the initial rainfall losses were found to vary from 0.38 mm to 0.70 mm for the different areas. The parts of the areas contributing to runoff were found to be proportional to the impermeable parts of the mas. The equation is applicable in urban areas with well defined paved surfaces and roofs and with a negligible amount of runoff from permeable areas.  相似文献   

6.
The flow records of the Rivers Bure, Nar and Wensum in eastern England have been examined with the aim of identifying long-term changes in flow behaviour relating to variations in rainfall amount, land use, land drainage intensity and water resources use. In the study area, and since 1931, there is no evidence of long-term change in rainfall amount or distribution, on either an annual or seasonal basis. Despite changes in water resources use and catchment characteristics since the beginning of the century, such as the ending of water milling and increased land drainage and arable farming, rainfall-runoff modelling over the period 1964-1992 showed that the relationship between rainfall and runoff has remained essentially unchanged in the three study rivers. A catchment resource model used to 'naturalise' the historic flow records for the period 1971-1992 to account for the net effect of water supply abstractions and discharges revealed that mean river flows have been altered by surface water and groundwater abstractions, although the average losses to mean weekly flows due to net abstractions for all water uses was no greater than 3%. Greater losses occurred during drought periods as a result of increased consumptive use of water for spray irrigation and amounted to a maximum loss of 24% in the Nar catchment. In lowland areas such as eastern England that are prone to summer dry weather and periodic drought conditions, an integrated approach to river basin management, as advocated by the EU Framework Directive, is recommended for future management of surface and groundwater resources for public water supplies, river regulation purposes and industrial and agricultural demands.  相似文献   

7.
Snow is an important component of the hydrologic cycle for many regions worldwide. In addition to vital water resources, snowmelt can be important for forest ecosystem dynamics and flood risk. However, standard design events in the United States lack a design snowmelt event, including only precipitation events, though snowmelt has been shown to be larger than rainfall. In this article, we present a method using hourly snow water equivalent data to develop and test a function for representing the diurnal pattern of snowmelt. A two‐parameter beta distribution function is modified for the purposes of this study and found to fit the pattern of snowmelt well with a root mean squared error of 0.008. Soil moisture sensors were additionally utilized to assess the timing of the snowmelt water outflow from the base of the snowpack that supports the shape of the function, but suggests that the timing of losses recorded on snow pillows lag as much as 3 h. Further testing of the function showed the shape of the function to be accurate. The methods developed and tested in this paper can be applied for design purposes comparing snowmelt and rainfall events or to improve hydrological models investigating processes such as streamflow or groundwater recharge.  相似文献   

8.
ABSTRACT: Runoff Routing model (RORB) is a general model applicable to both rural and urban catchments. The performance of the model is illustrated through its simulation of flood runoff hydrographs in an urban catchment in Singapore. The essential feature of the model is the routing of rainfall excesses on subareas through some arrangement of concentrated storage elements, which represent the distribution of temporary storage of flood runoff on the watershed. This nonlinear routing procedure of the storage elements has two common parameters, kc and m. With the limited data available, these two parameter values were determined through calibration runs. The same set of values of kc and m were then used in the model to determine the runoff hydrographs of five other storms selected from the rainfall events between 1979 and 1981. It was found that the simulated runoff hydrographs matched reasonably well with the recorded hydrographs.  相似文献   

9.
Incorporating applied phosphorus (P) sources can reduce P runoff losses and is a recommended best management practice. However, in soils with low P retention capacities, leaching can be a major mechanism for off-site P loss, and the P-source application method (surface or incorporation) may not significantly affect the total amount of off-site P loss. We utilized simulated rainfall protocols to investigate effects of P-source characteristics and application methods on the forms and amounts of P losses from six P sources, including five biosolids materials produced and/or marketed in Florida, and one inorganic fertilizer (triple superphosphate). A typical Florida Spodosol (Immokalee fine sand; sandy, siliceous, hyperthermic Arenic Alaquods) was used for the study, to which the P sources were each applied at a rate of 224 kg P ha(-1) (approximately the P rate associated with N-based biosolids applications). The P sources were either surface-applied to the soil or incorporated into the soil to a depth of 5 cm. Amended soils were subjected to three simulated rainfall events, at 1-d intervals. Runoff and leachate were collected after each rainfall event and analyzed for P losses in the form of soluble reactive P (SRP), total dissolved P (TDP), total P (TP), and bioavailable P (BAP) (in runoff only). Cumulative masses (runoff + leachate for the three rainfall events) of P losses from all the P sources were similar, whether the amendments were surface-applied or incorporated into the soil. The solubility of the amendment, rather than application method, largely determines the P loss potential in poorly P-sorbing Florida Spodosols.  相似文献   

10.
In Australia, problems of dryland and stream salinity have recently become the focus of a National Action Plan. In many river catchments, preliminary stream salt load and salinity targets have been set to define maximum permissible export levels in 2015. Afforestation has been proposed as a strategy for meeting these targets, although several studies suggest that widespread commercial tree plantations are likely to deliver net dis-benefits. However, the impacts on stream salt loads of more localised tree plantings in high salt yielding areas have not been quantified. In this paper we use a simple empirical model to predict the effects of various strategic and non-strategic tree planting scenarios on flows and salt loads in the mid-Macquarie catchment, New South Wales. A simple salt routing model is then used to estimate the effect of these changes on salt loads at the end-of-valley monitoring site for the Macquarie catchment. Results suggest that widespread land management interventions will be required to meet the preliminary salt load targets for this catchment. On their own, small-scale, strategic tree planting in high salt export areas of the mid-Macquarie area will not have a significant impact on salt loads at the end-of-valley monitoring site. While widespread tree plantings may reduce salt loads in the longer term, they are likely to cause streamflow losses in the shorter term. Thus, stream salinities are expected to rise initially, due to the different response times of groundwater and surface water systems to land use change.  相似文献   

11.
ABSTRACT: A semi-distributed deterministic model for real-time flood forecasting in large basins is proposed. Variability of rainfall and losses in space is preserved and the effective rainfall-direct runoff model segment based on the Clark procedure is incorporated. The distribution of losses in space is assumed proportional to rainfall intensity and their evolution in time is represented by the φ-index; furthermore, an initial period without production of effective rainfall is considered. The first estimation of losses and the associated forecasts of flow are performed at the time corresponding to the first rise observed in the hydrograph. Then the forecasts of flow are corrected at each subsequent time step through the updating of the φ-index. The model was tested by using rainfall-runoff events observed on two Italian basins and the predictions of flow for lead times up to six hours agree reasonably well with the observations in each event. For example, for the coefficient of persistence, which compares the model forecasts with those generated by the no-model assumption, appreciable positive values were computed. In particular, for the larger basin with an area of 4,147 km2, the mean values were 0.4, 0.4 and 0.5 for forecast lead times of two hours, four hours and six hours, respectively. Good performance of the model is also shown by a comparison of its flow predictions with those derived from a unit hydrograph based model  相似文献   

12.
ABSTRACT: The rainfall‐runoff response of the Tygarts Creek Catchment in eastern Kentucky is studied using TOPMODEL, a hydrologic model that simulates runoff at the catchment outlet based on the concepts of saturation excess overland flow and subsurface flow. Unlike the traditional application of this model to continuous rainfall‐runoff data, the use of TOPMOEL in single event runoff modeling, specifically floods, is explored here. TOPMODEL utilizes a topographic index as an indicator of the likely spatial distribution of rainfall excess generation in the catchment. The topographic index values within the catchment are determined using the digital terrain analysis procedures in conjunction with digital elevation model (DEM) data. Select parameters in TOPMODEL are calibrated using an iterative procedure to obtain the best‐fit runoff hydrograph. The calibrated parameters are the surface transmissivity, TO, the transmissivity decay parameter, m, and the initial moisture deficit in the root zone, Sr0. These parameters are calibrated using three storm events and verified using three additional storm events. Overall, the calibration results obtained in this study are in general agreement with the results documented from previous studies using TOPMODEL. However, the parameter values did not perform well during the verification phase of this study.  相似文献   

13.
Sediment and total phosphorus (TP) export vary through space and time. This study was conducted to determine the factors controlling sediment and TP export in two agricultural catchments situated in the Belgian Loess Belt. At the outlet of these catchments runoff discharge was continuously measured and suspended sediment samples were taken during rainfall events. Within the catchments vegetation type and cover, soil surface parameters, erosion features, sediment pathways, and rainfall characteristics were monitored. Total P content and sediment characteristics such as clay, organic carbon, and suspended sediment concentration were correlated. Total sediment and TP export differ significantly between the monitored catchments. Much of the difference is due to the occurrence of an extreme event in one catchment and the morphology and spatial organization of land use in the catchments. In one catchment, the direct connection between erosive areas and the catchment outlet by means of a road system contributed to a high sediment delivery ratio (SDR) at the outlet. In the other catchment, the presence of a wide valley in the center of the catchment caused sediment deposition. Vegetation also had an effect on sediment production and deposition. Thus, many factors control sediment and TP export from small agricultural catchments; some of these factors are related to the physical catchment characteristics such as morphology and landscape structure and are (semi)permanent, while others, such as vegetation cover and land use, are time dependent.  相似文献   

14.
ABSTRACT: Flow rates, pH, iron concentration, and manganese concentration were measured during several storm events at two constructed wetlands receiving mine water. During a substantial rain event, flow rates at both the wetland outlets surpassed flow rates at the wetland inlets, reflecting incident rainfall and differences in wetland area at the two sites. A significant positive correlation existed between local rainfall and outflow rates at the larger wetland, but not between rainfall and inflow rates. During storm events, outlet pH, relative to inlet pH, was slightly elevated at the larger wetland, and depressed at the smaller wetland. However, over the course of one year, rainfall was uncorrelated to outlet pH in the larger wetland. A substantial rain event at the smaller wetland resulted in a temporary elevation in outlet iron concentrations, with treatment efficiency reduced to near zero. However, in the larger wetland, outlet iron concentrations were not significantly affected by storm events. Although rainfall and outlet iron concentration were not significant correlates at the larger wetland, flow rate was positively correlated to outlet iron concentration. A normal manganese treatment efficiency of 50 percent at the smaller wetland was reduced to zero during a heavy rain.  相似文献   

15.
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

16.
The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.  相似文献   

17.
Phosphorus losses from agricultural land can cause accelerated eutrophication of surface water bodies. This study evaluated the use of soil test phosphorus (STP) levels to predict dissolved inorganic phosphorus (DIP) concentrations in runoff water from agricultural soils using laboratory rainfall simulation. The objectives of this study were to determine (i) to what extent STP concentrations can be used as a basis to predict P losses from Alberta soils and (ii) how extended rainfall simulation run times affected DIP losses. Soil samples collected from a total of 38 field sites, widely scattered throughout the southern half of Alberta, were subjected to rainfall simulation in the laboratory. The STP concentrations were determined using Miller-Axley, Norwest, Kelowna, Modified Kelowna Mehlich-III, and distilled water extraction methods. Each rainfall simulation event lasted for at least 90 min. Runoff samples were collected in time series for the duration of each simulation, during two distinct runoff intervals: (i) for the first 30 min of continuous runoff (T30) and (ii) for 40 min during runoff equilibrium (Teq). For all the STP extractants and both runoff intervals, the relationship with DIP-flow-weighted mean concentration (FWMC) was linear and highly significant with r2 values ranging from 0.74 to 0.96. However, the slopes of the resulting regression lines were, on average, 1.85 times greater for the T30 runoff interval over those computed for the Teq interval. Thus experimental methodology greatly influenced regression parameters, suggesting that more work was needed to verify these relationships under natural conditions. In addition, with many of the r2 values greater than 0.90 there would be little, if any, benefit derived by including soil properties in regression analysis.  相似文献   

18.
An equivalence is proposed between two rainfall‐runoff methods with a long history of use in the United States and Europe. In watersheds where variable source areas dominate runoff, the two methods can have comparable probability distribution functions of moisture deficit, and therefore predict similar saturated runoff source areas. A novel approach is introduced to determine the S parameter in the Natural Resources Conservation Service (NRCS) method. This approach constrains S by the physical soil and topography characteristics of the catchment and depth to water table. The NRCS curve number method is at the core of many rainfall‐runoff models in hydrology. As a simple lumped parameter method, it is often scrutinized because it is not obvious how to derive S from catchment hydromorphological characteristics. The novel approach provides a clear physical meaning for S, allowing better estimation of this parameter in humid shallow water table environments where the variable source area can be the dominant runoff mechanism.  相似文献   

19.
Simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) losses via runoff in California are a potential source of environmental contamination because simazine is widely used for weed control during the rainy season from November to March. This study was conducted in two citrus orchards from three rainfall events to evaluate the effects of shallow mechanical incorporation on simazine losses in runoff during the winter. Simazine losses in runoff were compared between row middles that were either undisturbed, the normal orchard practice, or subjected to shallow mechanical incorporation. Mechanical incorporation of row middles significantly reduced runoff volumes by approximately 45 and 28% for the first and second runoff events, respectively. In undisturbed plots, simazine concentrations in runoff from the first runoff event ranged from 0.62 to 0.73 mg L(-1); then simazine concentrations rapidly decreased (0.03-0.35 mg L(-1)) from the second and third runoff events. In disturbed plots, simazine concentrations in runoff from the first runoff event ranged from 0.21 to 0.24 mg(-1), but simazine concentrations remained relatively constant between the three runoff events. Total mass recoveries of simazine in runoff ranged from 1.93 to 2.97% and from 0.70 to 0.74% of application from the undisturbed plots and from the disturbed plots, respectively. Low water infiltration rate inhibited surface-applied herbicide incorporation into the soil matrix with natural rainfall in compacted soils. Mechanical incorporation of row middles significantly reduced runoff volumes, simazine concentrations, and mass losses in runoff after application.  相似文献   

20.
ABSTRACT: For a set of 81 catchments in southeast Victoria, Australia, predictive equations were developed by least squares regression of the mean and coefficient of variation of annual Streamflow against a variety of rainfall and physiographic parameters. The data were also divided into subsets according to catchment size, subregion, or record length of investigate if the relationships differed significantly between subsets. Only the catchment area and some rainfall statistical parameters were found to be significant. Streamflow parameters predicted by the regression equations were used to estimate storage requirements in ungauged catchments. The influence of errors in the Streamflow parameters on the storage error was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号