首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
ABSTRACT: The South Fork of Long Island, New York is an area which relies entirely on ground water for water supply. Most of the water which is pumped is artifically recharged, without treatment, via cesspools. The natural quality of the ground water is very high. Some areas show increasing nitrate in the ground water. This comes from both cesspools and agricultural fertilizer. Saline water intrusion is a potential problem in coastal areas. High ammonia in surface ponds may result in eutrophication.  相似文献   

3.
4.
ABSTRACT: A deep water-resource and stratigraphic test well near the center of Nantucket Island, about 40 miles (64 km) off the New England Coast, has encountered freshwater at greater depth than predicted by the Ghyben-Herzberg principle. An uppermost lens of fresh-water, which occupies relatively permeable glacial-outwash sand and gravel to a depth of 520 ft. (158 m), is probably in hydrodynamic equilibrium with the present level of the sea and the height of the water table. However, two zones of freshwater between 730-820 ft. (222-250 m) and 900-930 ft. (274-283 m) are anomalously deep. A third zone extending from 1150-1500 ft. (350-457 m) contains slightly salty ground water (2 to 3 parts per thousand dissolved solids). Several explanations are possible, but the most likely is that large areas of the Continental Shelf were exposed to recharge by precipitation during long periods of low sea level in Pleistocene time. After the last retreat of glacial ice, seawater rapidly drowned the shelf around Nantucket Island. Since then, about 8000 years ago, the deep freshwater zones which underlie dense clay layers have not had time to adjust to a new equilibrium. Under similar circumstances freshwater may remain trapped under extensive areas of the Continental Shelf wherever clay confining beds have not permitted saltwater to intrude rapidly to new positions of hydrodynamic equilibrium. The implications are far reaching because all continental shelfs were exposed to similar hydrologic influences during Pleistocene time.  相似文献   

5.
Regression analyses of major ion concentration in relation to specific conductance of water from the Mohawk River during two separate periods, 1951–53 and 1970–74, indicate statistically insignificant changes in the linear relationship of all constituents studied except chloride. Mean values and changes in the slopes of these relationships indicate that sodium and chloride have had consistently higher yields, in kilograms per square kilometer per year, than the other ions, although all ions show a general 20 percent increase in yields during the two decades. This general increase in ion yields is attributed to an accelerated transport rate of ions out of the basin as a result of a 19 percent increase in mean stream discharge. Transport rates of sodium and chloride have increased by 72 and 145 percent, respectively, in the Mohawk River since the early 1950's. Analysis of the sodium and chloride sources indicates rock salt used as a road deicei to be the primary source. This salt use accounts for 96 percent of the sodium transport increase and 69 percent of the chloride transport increase within the basin during the last two decades.  相似文献   

6.
ABSTRACT: Karst terrane provides a linkage between surface water and ground water regimes by means of caves, sinkholes and swallets, and sinking streams, and facilitates the inter‐watershed transfer of water and contaminants through these subsurface systems. The goal of this study was to develop procedures to identify the sources of degradation of a creek situated in a complex karst‐water system. The study approach consisted of using dye tracing technique to determine subsurface flow paths through the karst system, a water‐sampling network to identify and characterize pollution sources within the surface watershed and subsurface flow regime, and evaluation of analytical data for several water quality parameters. The results of this study provide an interesting perspective of water and contaminant movement in karst‐water systems and pinpoint the sources of stream contamination for a case study site in southwest Virginia where two springs supply water to a contaminated freshwater stream.  相似文献   

7.
A methodology consisting of ordinal logistic regression (OLR) is used to predict the probability of occurrence of arsenic concentrations in different threshold limits in shallow ground waters of the conterminous United States (CONUS) subject to a set of influencing variables. The analysis considered a number of maximum contaminant level (MCL) options as threshold values to estimate the probabilities of occurrence of arsenic in ranges defined by a given MCL of 3, 5, 10, 20, and 50 μg/l and a detection limit of 1 μg/l. The fit between the observed and predicted probability of occurrence was around 83 percent for all MCL options. The estimated probabilities were used to estimate the median background concentration of arsenic in the CONUS. The shallow ground water of the western United States is more vulnerable than the eastern United States. Arizona, Utah, Nevada, and California in particular are hotspots for arsenic contamination. The risk assessment showed that counties in southern California, Arizona, Florida, and Washington and a few others scattered throughout the CONUS face a high risk from arsenic exposure through untreated ground water consumption. A simple cost effectiveness analysis was performed to understand the household costs for MCL compliance in using arsenic contaminated ground water. The results showed that the current MCL of 10 μg/l is a good compromise based on existing treatment technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号