首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: A number of aspects of the discharging of non-oily wastewaters by transiting ships are treated in this overview paper. In the introduction, options to discharging (the use of holding tank, on board treatment) and the impact of changing regulations are discussed. Assessment of the effects of sewage discharges on coastal waters required that data, at first not available, be generated. An account is given of the characterization of Navy shipboard wastewaters and of experiments involving sewage discharges at sea, measurements of water quality before, during and after an amphibious operation, and fore and aft of transitting Navy ships. A better understanding of sewage dilution after discharge led to the verification of a method for controlled discharging of sewage (and other wastewaters). This method permits limiting the coliform bacteria count in the ship's wake to values below acceptable limits. The final sections contain information on long range effects of ships’sewage discharges, obtained in studies by the U.S. Navy and others, as well as public health considerations.  相似文献   

2.
Atmospheric reaeration is a natural mechanism of oxygen transfer from the atmosphere to a water body. In practice, stream water quality models are developed with reaeration coefficients (K2) estimated by predictive equations. This leads to uncertainties in modeling analysis because these equations are empirical in nature and may yield greatly different K2 values for the same stream. Values of K2 may be adjusted in model calibration, but unfortunately, values of other model parameters are no less easy to identify and require adjustment in model calibration as well. Therefore, validity of a stream model would be enhanced significantly if K2 could be determined directly and reliably. In this research, values of K2 in the Canandaiqua Outlet in Central New York have been measured by using a gas tracer method. A successful modeling analysis was conducted using these K2 values. As a result, effluent limitations of several waste water discharges into the Outlet were established. It was concluded that field measurements of reaeration rate would improve modeling results significantly, and that the gas tracer method can be easily incorporated into intensive water quality surveys normally required for stream modeling.  相似文献   

3.
ABSTRACT: Hydrologic models have become an indispensable tool for studying processes and water management in watersheds. A physically-based, distributed-parameter model, Basin-Scale Hydro-logic Model (BSIIM), has been developed to simulate the hydrologic response of large drainage basins. The model formulation is based on equations describing water movement both on the surface and in the subsurface. The model incorporates detailed information on climate, digital elevation, and soil moisture budget, as well as surface-water and ground-water systems. This model has been applied to the Big Darby Creek Watershed, Ohio in a 28-year simulation of rainfall-runoff processes. Unknown coefficients for controlling runoff, storativity, hydraulic conductivity, and streambed permeability are determined by a trial-and-error calibration. The performance of model calibration and predictive capability of the model was evaluated based on the correlation between simulated and observed daily stream discharges. Discrepancies between observed and simulated results exist because of limited precipitation data and simplifying assumptions related to soil, land use, and geology.  相似文献   

4.
Levee failure and overtopping as a result of Hurricane Katrina caused major flooding of New Orleans, Louisiana. Floodwaters, which were contaminated with heavy metals, organic chemicals, and fecal coliform bacteria (FCB), were pumped into neighboring Lake Pontchartrain during dewatering. The impact of levee failure on water and benthic sediment concentrations in the lake was investigated by applying a numerical water quality model coupled to a three-dimensional, numerical hydrodynamic model. The model was used to compute water and benthic sediment concentrations throughout the lake for lead, arsenic, benzo(a)pyrene (BaP), and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), and water concentrations for FCB. Computed concentrations resulting from actual pumped discharges with levee failure and overtopping were compared to computed concentrations resulting from pumped discharges without levee failure or overtopping, and concentrations from both sets of conditions were compared to ecological water and sediment quality screening guideline values. The model indicated that incremental increases above pre-Katrina benthic sediment concentrations are about a factor of 10 greater with dewatering of the floodwaters than with dewatering of storm water without flooding. However, these increases for the metals are small relative to pre-Katrina concentrations. The results showed that the ecological screening-level sediment quality guideline values were exceeded for BaP and DDE in areas near the south shoreline of the lake as a result of floodwater pump-out, whereas, this was not the case for storm water removal without flooding. The model showed that lake water column concentrations should be about the same during both dewatering conditions regardless of whether there is flooding or not.  相似文献   

5.
Stephenson, Kurt and Leonard Shabman, 2011. Rhetoric and Reality of Water Quality Trading and the Potential for Market‐Like Reform. Journal of the American Water Resources Association (JAWRA) 47(1):15‐28. DOI: 10.1111/j.1752‐1688.2010.00492.x Abstract: Many public interest groups, government agencies, and professional economists argue that current approaches to water quality trading are a cost‐effective, politically practical innovation for achieving water quality standards, in part by addressing one of the most difficult water quality improvement challenges – limiting the discharge from nonpoint sources. A critical analysis shows that these claims for current water quality trading programs are often unrealized. This rhetoric, without adherence to principles of market‐like reform, can undermine the support of regulated parties for meaningful water quality policy reform, contribute to missed opportunities to implement cost‐effective programs, and postpone successfully meeting the challenge of limiting nonpoint source discharges. A better understanding and application of market‐like principles can result in an improved design of trading as well as general water quality management programs.  相似文献   

6.
ABSTRACT: Nonstorm water discharges to municipal separate storm sewer systems (MS4s) are notable for spatial and temporal variability in volume, pollutant type, pollutant concentration, and activity of origin. The objective of this paper was to determine whether current technical knowledge and existing U.S. policy support an improved regulatory approach. The proposed policy would use type of discharge as a regulatory basis, merging the concepts of allowability of de minimis discharges and type-based statewide consistent rules. Specific research objectives were to comprehensively identify discharge types, characterize their prevalence in California, analyze relevant local and regional regulatory guidelines, and systematically evaluate opinions of experts about potential water quality impacts. Results demonstrate nonstorm water discharges were widespread in at least one sector, industrial facilities subject to a state permit; one discharge for every four facilities was reported in 1995, even though the permit explicitly prohibits such discharges. Clear consensus exists for minimal water quality concern for some discharge types when considering both municipal guidelines and experts’ opinions. In particular, condensate from a wide range of equipment and discharges from fire fighting equipment testing were found to be of low concern. Discharge types with consensus high concern were largely limited to discharges prohibited under other regulations, such as wastewater and hazardous waste management controls. Some discharge types where no consensus was identified, such as landscape irrigation, nevertheless generated concern for water quality impacts and appear to be relatively widespread. Available information supports technical feasibility of the proposed policy because at least some discharge types show strong consensus for de minimis impacts among regulatory guidelines and opinions of technical experts.  相似文献   

7.
ABSTRACT: Economic values of riparian buffers in a watershed are evaluated by the changes in the net economic return for farming with and without riparian buffers when achieving the same water quality objectives. The simulated water quality impacts of alternative farming systems using SWAT and experimental data for riparian buffers are used in a mathematical optimization model to estimate net economic return for farming subject to a water quality objective. Physical characteristics such as stream length, channel slope, average land slope, cropland percentage and several soil attributes are identified in the watershed using ARC/INFO GIS. A regression model is then used to evaluate the impacts of these physical characteristics on the estimated economic values of buffers. The study is conducted in Goodwater Creek watershed, Missouri. The results show the estimated economic value of buffers is significantly affected by some soil properties, stream length, and cropland percentage in watershed and can be used to improve the effectiveness of riparian buffers at watershed and regional levels.  相似文献   

8.
ABSTRACT: Rapid biological information systems using aquatic organisms to monitor water and waste water quality have only recently begun to develop technologically for practical on-site applications. One approach which has been demonstrating its feasibility recently monitors the ventilatory behavior of fish to assess, for example, the quality of drinking water supplies and industrial waste water discharges. A comparison of the basic strategies of the various biological monitoring systems making use of this concept is presented. In addition, the applications and potential utilization of these systems are discussed.  相似文献   

9.
Abstract: New criteria, pollutant load of unit area (PLUA), are developed for sustainable water quality management, which not only avoids degrading water quality but also considers the equity of development between different generations. A simulation‐optimization model is established to determine PLUA, in which uses the QUAL2E model to simulate pollutant transport and formulates a linear programming model to optimize the objective of maximal loads (carrying capacity). Two watersheds, the Touchen creek and the Keya creek, both in Taiwan, are taken as case studies. The PLUA criterion is applied to several existing projects which have passed environmental impact assessment (EIA). The results show that if the Hsinchu Science‐Based Industrial Park discharges wastewater to the Touchen creek, the total pollutant discharge of 85.6 kg/day exceeds the allocated load. Consequently, a waste reduction of at least 23.4% is required. Although these existing projects have passed EIA, most of them violate the criterion of PLUA and thus contribute to continued degradation of water quality. This study suggests developing PLUA as a part of the process of strategic environmental assessment (SEA) for watershed management plans and then applying it to EIA as a criterion for new project assessment. Furthermore, if carrying capacities of all pollutant discharges and resource uses can be translated into loads per unit of area, an integrated sustainable watershed management plan can be developed.  相似文献   

10.
ABSTRACT: A one-layer decreasing-availability monthly water balance model is used to estimate monthly surplus that flows into the Lake Pontchartrain Basin from the Amite, Tickfaw, Natalbany, Tangipahoa, and Tchefuncte Rivers for water years 1949 through 1990. The modeled annual surplus for each drainage basin is compared to gauged annual discharge obtained from the United States Geological Survey. This provides an estimate of the differential success of the model over watersheds of various sizes, and also suggests appropriate adjustment factors to be used in future water balance analyses of similar basins in humid subtropical climate regions. Results show that annual surplus values agree well with the USGS values, after an annual adjustment of about 140 mm (11 to 28 percent of the basin surplus) is subtracted from the annual modeled totals to compensate for overestimation by the model. However, inter-annual variability is high in the annual cycles. Winter and spring discharges can also be modeled successfully.  相似文献   

11.
The biodiversity of many Brazilian rivers is seriously threatened by industrial and municipal pollution, and Rio Paraiba do Sul, located between two major industrial centers is one example of this situation. A survey of the fish assemblage was conducted from October 1998 to September 1999 and the data were used to develop an index of biotic integrity (IBI). We sampled three zones in bracketing a large urban–industrial complex to evaluate water quality changes and the usefulness of the IBI as a monitoring tool. Water quality was classified as poor upstream of the effluent discharges, very poor near the discharges, and poor–fair downstream of the discharges, with this latter situation revealing the current biological capacity of the river. Physical and chemical habitat characteristics were also measured at each site to construct an independent environmental index to validate the IBI. The habitat and IBI indices were highly correlated, suggesting this IBI would be applicable to other large rivers in southeast Brazil.  相似文献   

12.
对辽河油田欢喜岭采油厂在事故状态下污染物排放对大凌河水域环境的影响进行预测研究。计算了洪水淹没、油罐冒顶泄漏、油井井喷泄漏、联合站泄漏、管道泄漏、暴雨径流带走落地油等16种情景下对该河流水质的影响情况,并建立数学模型,进行情景模拟。研究结果表明,事故状态下对大凌河水质影响的次序由大到小依次为:洪水淹没、油罐冒顶泄漏、油井井喷泄漏、联合站泄漏、管道泄漏、暴雨径流。  相似文献   

13.
Several large agricultural pumps, located in the upper St. Johns River Basin, Florida, and representative of the numerous pumps operating in the basin, were monitored during the spring and summer of 1982. These pumps have rated capacities ranging from 36 to 334 ft3/s and drain various quantities of improved pasture, row crop, and citrus land uses. The combined total pumping capacity of the pumps in this study is approximately equal to the average flow at US 192, near Melbourne (691 cfs). Results indicate high nutrient and suspended solids loading to the river, but the relative magnitude of each parameter varies with pump site and date. The row crop/Mary A pump (267 ft3/s capacity) exhibited the poorest water quality of the sampled pumps and appeared to have the greatest pollutional potential. The average suspended solids loading rate from the Mary A pump was high (37,900 Kg/day). The average total nitrogen (TN) and total phosphorus (TP) discharge concentrations at this pump were also high, with values of 3.96 mg/L and 0.79 mg/L, respectively. As expected, nutrient loading rates reflected discharge rates, to a large degree. Average TN loading rates for the pumping stations varied from 86 to 1935 Kg/day while TP loading ranged from 7 to 390 Kg/day. Nutrients from pumping are contributing factors to the increasing aquatic plant growth and algal blooms in the area. Poor quality discharge water, as well as rapid rises in water level from the cumulative discharges resulting in dead marsh vegetation and accompanying oxygen sags, have been suggested as causative factors for fish kills in the area.  相似文献   

14.
Hydrologic/water quality models are increasingly used to explore management and policy alternatives for managing water quality and quantity from intensive silvicultural practices with best management practices (BMPs) in forested watersheds due to the limited number of and cost of conducting watershed monitoring. The Agricultural Policy/Environmental eXtender (APEX) model was field-tested using 6 yr of data for flow, sediment, nutrient, and herbicide losses collected from nine small (2.58 to 2.74 ha) forested watersheds located in southwest Cherokee County in East Texas. Simulated annual average stream flow for each of the nine watersheds was within +/- 7% of the corresponding observed values; simulated annual average sediment losses were within +/- 8% of measured values for eight out of nine watersheds. Nash-Sutcliffe efficiency (EF) values ranged from 0.68 to 0.94 based on annual stream flow comparison and from 0.60 to 0.99 based on annual sediment comparison. Similar to what was observed, simulated flow, sediment, organic N, and P were significantly increased on clear-cut watersheds compared with the control watersheds. APEX reasonably simulated herbicide losses, with an EF of 0.73 and R(2) of 0.74 for imazapyr, and EF of 0.65 and R(2) of 0.68 for hexazinone based on annual values. Overall, the results show that APEX was able to predict the effects of silvicultural practices with BMPs on water quantity and quality and that the model is a useful tool for simulating a variety of responses to forest conditions.  相似文献   

15.
ABSTRACT A methodology for predicting the spatial and temporal levels of conservative water quality constituents within a multibasin water resource system is presented. Dissolved solids, sulfates, and chlorides are the constituents used during this investigation; however, any other conservative ion or mineral can be incorporated into the simulation model. The methodology is tested on the proposed Texas Water System. The water quality model, QNET-I, utilizes monthly canal and river flows and reservoir storage levels calculated by the Texas Water Development Board's systems simulation model. Discharge-concentration relationships are developed for each source of water in the system, including significant waste-water discharges. Reservoirs in the system are assumed to be completely mixed with respect to conservative constituents. A mass balance analysis is performed for each node and each month during the simulation period. The output from the water quality simulation is a table of the concentrations of the conservative water quality constituents at each demand point in the system and in each reservoir and canal for every month the system is in operation. The desired quality of the water at the demand locations is used to determine the economic utility of transporting and mixing water from various sources.  相似文献   

16.
Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.  相似文献   

17.
Water quality must be considered in the development and planning aspects of water resource management. To accomplish this, the decision-maker needs to have at his disposal a systematized procedure for simulating water quality changes in both time and space. The simulation model should be capable of representing changes in several parameters of water quality as they are influenced by natural and human factors impinging on the hydrologic system. The objective of this work is two-fold. The first goal is to demonstrate the feasibility of developing and utilizing a water quality simulation model in conjunction with a hydrologic simulation model. The model represents water quality changes in both time and space in response to changing atmospheric and hydrologic conditions and time-varying waste discharges at various points in the system. This model has been developed from and verified with actual field data from a prototype system selected for this purpose. The second aim is to set forth procedural guidelines to assist in the development of water quality simulation models as tools for use in the quality-quantity management of a hydrologic unit.  相似文献   

18.
MFAM模型在河流水质污染模拟及预测中的应用   总被引:2,自引:0,他引:2  
张学成 《四川环境》1994,13(4):10-15
文中以时间序列分析为基础,介绍了均值生成函数这一崭新概念,并且经成份因子提取分析推导建立了模拟序列的数字模型(简记为MFAM),经对黄河下游花园口断面的1988-1989年实测水质污染指标溶解氧(DO),氨氧,化学耗氧量(COD),五日生化需氧量(BOD5)等序列模拟,结果表明MFAM模型能较好地模拟河流水质污染指标的变化趋势,拟合平均误差只有5.2-6.4%,MFAM模型应用于预测1990-1991年水质污染指标变化,结果表明预测精度达85%以上,文中最后得出结论:MFAM模型应用于河流污染模拟和预测,是完全可行且十分方便。  相似文献   

19.
ABSTRACT: As part of its overall system for protecting aquatic systems from unnecessary degradation, the State of Florida provides special protection for water bodies of unusual importance. Such water bodies are designated as “Outstanding Florida Waters” (OFW5). New discharges to OFWs are possible only if certain stringent criteria are met. A new point source direct discharge to an OFW is usually not allowed if it would cause any lowering of ambient water quality. A new indirect discharge (upstream from an OFW boundary) may be allowed only if it would not significantly degrade the OFW. To date, the advantages of the OFW system have clearly outweighed the disadvantages, and OFW designations are helping to protect Florida's most valuable waters from additional degradation. Florida's system could be a useful model for other jurisdictions wanting to provide special protection to special water bodies.  相似文献   

20.
ABSTRACT: The development of a nondegradation policy for high quality waters is a complex and often controversial process. This paper discusses the development of a nondegradation policy for two components of the National Wild and Scenic Rivers System. Water quality in these reaches of the Delaware River is threatened by rapid growth and development and the cumulative impacts from numerous wastewater discharges and nonpoint sources of pollution. The Delaware River Basin Commission, with assistance from its member states and the National Park Service, conducted a highly public, six-year planning process to develop a nondegradation policy that protected existing water quality without impinging upon local and state economic development objectives. The resulting non-degradation policy includes such features as numeric definitions of existing water quality and measurable change; stringent point source requirements; nonpoint source requirements including watershed planning requirements; and other water quality management policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号