首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: The Penn State Urban Runoff Model, developed in 1976, is described in this paper. Aside from locating infiltration and detention basin operation in an unconventional manner, the model includes a peak flow presentation table which identifies watershed subareas chiefly responsible for the occurrence of flooding conditions at certain points in the watershed. The results of a case study on an urban drainage basin in the Philadelphia area is discussed, and preferred sites for retention ponds are suggested. The simplicity of the Penn State model is pointed out and computer run costs between 10 and 20 percent of the corresponding cards for HEC-I and SWMM are cited.  相似文献   

2.
ABSTRACT: Three urban runoff models, namely, the Road Research Laboratory Model (RRLM), the Storm Water Management Model (SWMM) and the University of Cincinnati Urban Runoff Model (UCURM), were examined by comparing the model simulated hydrographs with the hydrographs measured on several instrumented urban watersheds. This comparison was done for the hydrograph peak points as well as for the entire hydrographs using such statistical measures as the correlation coefficient, the special correlation coefficient and the integral square error. The results of the study indicated that, when applying the three selected non-calibrated models on small urban catchments, the SWM model performed marginally better than the RRL model and both these models were more accurate than the UCUR model. On larger watersheds, the comparisons between the SWM model and the other two models would be likely even more favourable for the SWM model, because it has the most advanced flow routing scheme among the studied models.  相似文献   

3.
ABSTRACT: A comprehensive study was conducted to implement the Storm Water Management Model (SWMM) for urban areas in Kuwait. The updated version of the model designed to run on an IBM Personal Computer and compatibles (PCSWMM3.2C) was utilized. The study revealed that urban runoff simulation in arid areas by the SWMM model is a powerful and efficient tool in designing drainage systems and as such, a viable replacement of the commonly used rational method. It was found that only the streets and paved areas that are hydraulically connected to the drainage system contribute to runoff. Fine and coarse discretization approaches were used in the study. The difference between the hydrographs simulated by the two approaches were relatively small. The performance of the existing drainage system and the accuracy of the design method used were tested using a 25-year storm. The result of the simulation revealed that the storm sewers were oversized by factors ranging from 1.2 to 3.6. The SWMM model was used to estimate the storm water runoff volume collected from all urbanized areas in Kuwait City. The annual expected harvested runoff water was found to be significant; however, the quality of runoff water needs to be assessed before a decision is made on its reuse.  相似文献   

4.
ABSTRACT: A review of methods for planning-level estimates of pollutant loads in urban stormwater focuses on transfer of charac. teristic runoff quality data to unmonitored sites, runoff monitoring, and simulation models. Load estimation by transfer of runoff quality data is the least expensive, but the accuracy of estimates is unknown. Runoff monitoring methods provide best estimates of existing loads, but cannot be used to predict load changes resulting from runoff controls, or other changes of the urban system. Simulation models require extensive calibration for reliable application. Models with optional formulations of pollutant build up, washoff, and transport can be better calibrated and the selection of options should be based on a statistical analysis of calibration data. Calibrated simulation models can be used for evaluation of control alternatives.  相似文献   

5.
ABSTRACT: The effects of an artificial lake system upon the runoff hydrology of a small watershed have been determined by comparing the quantity and quality of runoff with that of an adjacent and similar watershed containing no lakes. Lake storage reduced peak discharge and slowed flood recession rate downstream. Water stored within the lakes is generally of different quality than downstream surface runoff. Salt stored in the lakes from winter deicing is released during periods of surface runoff throughout the rest of the year. During summer or fall runoff events, lake outflow dominates the salt load of the outlet stream, generating double-peaked load hydrographs in which the second, or lake-induced, crest is many times larger than the peak which corresponds to maximum flow. On the other hand, the lakes cause a reduction of salt loads and concentration in winter runoff. The concentration and loads of ions which are not related to road salt are generally less affected by the lakes, although they are increased substantially in the fall.  相似文献   

6.
A matrix has been developed to guide the assessment of urban water resources. The matrix provides a means for determining the relative importance of water-related problems, and for identifying the data needed to evaluate these problems for the purpose of urban planning. The matrix columns list nine categories of potential water-related urban problems. The rows list 51 categories of data inputs which may be needed to evaluate the potential problems. The inputs include standard types of basic hydrologic data, information based on analysis and interpretation of these data, and information on the interfacing factors of climate, land, and culture. A system is described for ranking the relative importance of the problem categories and data inputs on a numerical scale of 0 to 3. From this, an index is derived that evaluates the relative importance of each input item to an overall program for water resource assessment. From the completed matrix the hydrologist can determine the availability of data to meet the identified requirements. Judgement can then be made as to priorities on work elements to provide the planner with maximum information in minimum time. The matrix also provides a basis for the development of programs and their funding in order to overcome critical data deficiencies.  相似文献   

7.
ABSTRACT: Drought has been a prevalent feature of the American landscape during the latter part of the 1980s, producing serious socioeconomic and environmental consequences. These recent experiences with drought have renewed concern about the inadequacy of federal and state contingency planning efforts and the lack of coordination for assessment and response efforts between these levels of government. This paper presents the results of research aimed at facilitating the preparation of drought contingency plans by state government in conjunction with a state's overall water management planning activity. The ten-step drought plan development process reported is intended to improve mitigation efforts through more timely, effective, and efficient assessment and response activities. Officials in appropriate state agencies should examine the proposed framework and alter it to best address drought-related concerns, adding or deleting elements as necessary.  相似文献   

8.
ABSTRACT: Regression models are presented that can be used to estimate mean loads for chemical oxygen demand, suspended solids, dissolved solids, total nitrogen, total ammonia plus nitrogen, total phosphorous, dissolved phosphorous, total copper, total lead, and total zinc at unmonitored sites in urban areas. Explanatory variables include drainage area, imperviousness of drainage basin to infiltration, mean annual rainfall, a land-use indicator variable, and mean minimum January temperature. Model parameters are estimated by a generalized-least-squares regression method that accounts for cross correlation and differences in reliability of sample estimates between sites. The regression models account for 20 to 65 percent of the total variation in observed loads.  相似文献   

9.
ABSTRACT: Estimates were made of petroleum hydrocarbon pollution loadings reaching the Delaware Estuary by determining storm event loadings of hydrocarbons from four storm sewers, draining areas of different land uses. Although refinery effluents constituted the largest source of petroleum pollution in 1975, it appears that after completion of currently required treatment processes urban runoff will be the largest remaining source of petroleum pollution. The petroleum in urban runoff resembles used crankcase oil in composition and contains toxic chemicals such as polynuclear hydrocarbons. Further research is clearly desirable. Remedial programs to control such pollution may be warranted on the basis of information now available.  相似文献   

10.
ABSTRACT: Rainfall is a significant source of some constituents, particularly nitrogen species, in storm runoff from urban catchments. Median contributions of rainfall to storm runoff loads of 12 constituents from 31 urban catchments, representing eight geographic locations within the United States, ranged from 2 percent for suspended solids to 74 percent for total nitrite plus nitrate nitrogen. The median contribution of total nitrogen in rainfall to runoff loads was 41 percent. Median contributions of total-recoverable lead in rainfall to runoff loads varied by as much as an order of magnitude between catchments in the same geographic location. This indicates that average estimates of rainfall contributions to constituent loading in storm runoff may not be suitable in studies requiring accurate constituent mass-balance computations.  相似文献   

11.
ABSTRACT A dynamic mathematical model was constructed to examine bacterial contamination problems affecting Ford Lake, a small recreational lake in Southeast Michigan. The model was calibrated and verified using summer dry weather averaged data and data from three wet weather surveys. Model simulations demonstrated that the major bacterial contamination was attributable to storm related perturbations affecting two point sources: the Huron River and the Ypsilanti Sewage Treatment Plant. The nonpoint source contribution was relatively minor. The Model is currently being used by the State of Michigan Department of Natural Resources as a management tool for assessing the effectiveness of planned pollution abatement strategies  相似文献   

12.
: This paper presents solutions to the one-dimensional, transient conservation of mass equations for the coupled biochemical oxygen demand-dissolved oxygen (BOD-DO) reactions, based on the principle of superposition, for continuously discharging plane sources. The solutions are applied within the framework of a continuous simulation model to allow the derivation of water quality frequency curves and frequency histograms of consecutive hourly dissolved oxygen violations, for any desired standard. Receiving water response is determined for waste inputs from urban wet weather, dry weather, and upstream sources. An application to Des Moines, Iowa, and Des Moines River indicated that urban storm water impacts on the stream can be masked in the cumulative frequency curve representation, but the benefits of storm water control are clearly shown in frequency histograms of the duration of consecutive stream standard violations.  相似文献   

13.
ABSTRACT: Stationarity of rainfall statistical parameters is a fundamental assumption in hydraulic infrastructure design that may not be valid in an era of changing climate. This study develops a framework for examining the potential impacts of future increases in short duration rainfall intensity on urban infrastructure and natural ecosystems of small watersheds and demonstrates this approach for the Mission/Wagg Creek watershed in British Columbia, Canada. Nonstationarities in rainfall records are first analyzed with linear regression analysis, and the detected trends are extrapolated to build potential future rainfall scenarios. The Storm Water Management Model (SWMM) is used to analyze the effects of increased rainfall intensity on design peak flows and to assess future drainage infrastructure capacity according to the derived scenarios. While the framework provided herein may be modified for cases in which more complex distributions for rainfall intensity are needed and more sophisticated stormwater management models are available, linear regressions and SWMM are commonly used in practice and are applicable for the Mission/Wagg Creek watershed. Potential future impacts on stream health are assessed using methods based on equivalent total impervious area. In terms of impacts on the drainage infrastructure, the results of this study indicate that increases in short duration rainfall intensity may be expected in the future but that they would not create severe impacts in the Mission/Wagg Creek system. The equivalent levels of imperviousness, however, suggest that the impacts on stream health could be far more damaging.  相似文献   

14.
ABSTRACT A synthetic storm rainfall hyetograph for a one-year design frequency is derived from the one-year intensity-duration curve developed for Cincinnati, Ohio. Detailed rainfall data for a three-year period were collected from three raingages triangulating the Bloody Run Sewer Watershed, an urban drainage areas of 2380 acres'in Cincinnati, Ohio. The advancement of the synthetic storm pattern is obtained from an analysis of the antecedent precipitation immediately preceding the maximum period of three selected durations. Rains which produced excessive runoff at least for some duration were considered only. The same approach can be used for other design frequencies. The purpose of this study is to provide synthetic storm hyetographs to be used as input in deterministic mathematical models simulating urban storm water runoff for the design, analysis and possible surcharge prediction of sewer systems.  相似文献   

15.
ABSTRACT: Mathematical models for predicting watershed surface flow responses are available, most of which are elaborate nonlinear numerical surface and channel flow models linked with infiltration models. Such models may be used to make predictions for ungaged areas, assuming an acceptable fitting of the model to the topography and roughness of the real system. For some application purposes, these models are impractical because of their complexity and expensive computer solutions. A procedure is developed that uses a complex model of an ungaged area to derive a simpler parametric nonlinear system model for repetitious simulation with input sequences. The predicted flow outputs are obtained with the simpler model at significant savings of money and time. The procedures for constructing a complex kinematic model of a 40 acre (161,880 m2) reference watershed and deriving the simpler system model are outlined. The results of predictions from both models are compared with a selected set of measured events, all having essentially the same initial conditions. Peak discharges ranged from 3 to 118 ft3/sec (0.085 to 3.34 m3/sec), which includes the largest event of record. The inherent limitations of lumped systems models are demonstrated, including the bias caused by their inability to model infiltration losses after rainfall ceases. Computer costs and times for the models were compared. The derived simple model has a cost advantage when repeated use of a model is required. Such an applications hydrologic model has an engineering tradeoff of reduced accuracy, and lumping bias, but is more economical for certain design purposes.  相似文献   

16.
ABSTRACT: A water supply network optimization model called MODSIM3 is presented as a decision-support tool for aiding city staff in determining how best to utilize and exchange existing and potential water supplies with other users in a river basin. The model is applied to the City of Fort Collins, Colorado, water supply system as a means of determining optimum ways the City can utilize direct flow rights, storage rights, and exchangeable waters from various sources. Results clearly confirm both the benefits of the use of exchanges and the value of MODSIM3 as a water supply planning and management tool.  相似文献   

17.
ABSTRACT: Techniques of optimization and simulation are merged to select the most efficient arrangement of components for regional water resources development and management. Application is made to the Elkhorn River Basin in Nebraska. The Basin extends over 7,000 square miles and includes 184 proposed reservoirs. Structure sizes, locations and operating policies are selected for optimal plans based on economic efficiency and regional development. Results indicate that substantial savings in time and costs over conventional planning techniques are effected. Agreement between model output and agency design values was noted.  相似文献   

18.
ABSTRACT: Many automatic calibration processes have been proposed to efficiently calibrate the 16 parameters involved in the four‐layered tank model. The Multistart Powell and Stuffed Complex Evolution (SCE) methods are considered the best two procedures. Two rainfall events were designed to compare the performance and efficiency of these two methods. The first rainfall event is short term and the second designed for long term rainfall data collection. Both rainfall events include a lengthy no‐rainfall period. Two sets of upper and lower values for the search range were selected for the numerical tests. The results show that the Multistart Powell and SCE methods are able to obtain the true values for the 16 parameters with a sufficiently long no‐rainfall period after a rainfall event. In addition, by using two selected objective functions, one based on root mean square error and one based on root mean square relative error criteria, it is found that the no‐rainfall period lengths necessary to obtain the converged true values for the 16 parameters are roughly the same. The SCE method provides a more efficient search based on an appropriate preliminary search range. The Multistart Powell method, on the other hand, leads to more accurate search results when there is no suitable search range selected based on the parameter calibration experience.  相似文献   

19.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   

20.
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号