首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive governance is advanced as a potent means of addressing institutional fit of natural resource systems with prevailing modes of political–administrative management. Its advocates also argue that it enhances participatory and learning opportunities for stakeholders over time. Yet an increasing number of studies demonstrate real difficulties in implementing adaptive governance ‘solutions’. This paper builds on these debates by examining the introduction of adaptive governance to water management in Chiang Mai province, north-west Thailand. The paper considers, first, the limitations of current water governance modes at the provincial scale, and the rationale for implementation of an adaptive approach. The new approach is then critically examined, with its initial performance and likely future success evaluated by (i) analysis of water stakeholders’ opinions of its first year of operation; and (ii) comparison of its governance attributes against recent empirical accounts of implementation difficulty and failure of adaptive governance of natural resource management more generally. The analysis confirms the potentially significant role that the new approach can play in brokering and resolving the underlying differences in stakeholder representation and knowledge construction at the heart of the prevailing water governance modes in north-west Thailand.  相似文献   

2.
我国华北平原分布有大小不等、形状各异的地下热水矿床;赋存于石灰岩地层形成的地质构造凸起部位的地下热水富水性好,井产水量大,自喷能力强,水质好,矿化度低,温度高,具有较高的开发利用价值。华北平原地下热水的热源与第三纪侵入的火成岩无关。地下热水的补给来源是山区大气降水渗入地下经过较大的构造断裂带和碳酸盐岩地层岩溶溶洞、断裂裂隙深循环以后形成的。地下热水的温度主要取决于水循环的深度。  相似文献   

3.
ABSTRACT: Most of the precipitation that falls is unused because it never reaches a stream or recharges an underground supply. This storm water evaporates and is transpired and consumed by plants. Described below are pertinent legal principles and the concept for a small-scale system to capture and store some of this “lost” storm water from the subflow of small gravelly washes that are not part of or connected with a stream system. The subsurface flow is interrupted by an elastomer faced earthen barrier (dam) and stored in a gravel bed. Both the barrier and the gravel storage bed are situated below the surface of the wash bed. If the gravel bed is not underlain by a natural substratum that is relatively impervious, it is either placed on a liner of suitable compacted clay or is underlain with an elastomeric membrane to limit the downward infiltration and loss of the stored water. A system may be used to capture and store sub-flow after surface flow has ceased and during periods of drought; to supply household and irrigation water; to exercise Winters Doctrine rights; and to replace small dams and surface impoundments by underground storage of the captured water to ensure a more reliable and sanitary supply for livestock and wildlife. A system is most effective in desert regions where (or when) both stream and ground water are unavailable; where rainfall is infrequent, but in storms resulting in rapid runoff; and where land surface topography and morphology coincide to form sites that permit the productive use of a system. A system should not be installed without sound legal and hydrological advice. Careful engineering is essential to the safe and proper design of a system, especially its subsurface barrier.  相似文献   

4.
ABSTRACT: Under Colorado's appropriative water right system, withdrawals by junior ground water rights must be curtailed to protect senior surface water appropriators sharing the same river system unless the ground water users replace the amount of their injury to the river under an approved plan for augmentation. Compensation of such injury with surface water may not only be expensive but unreliable in dry years. As an alternative, the curtailment of pumping may be obviated by recharging unused surface water into the aquifer when available and withdrawing it when needed. In order to manage such an operation, a practical tool is required to accurately determine that portion of the recharge water that does not return to the river before pumping for irrigation. A digital model was used for this purpose in a demonstration recharge project located in the South Platte River basin in northeastern Colorado. This paper summarizes the experiences gained from this project, the results of the digital model, the economic value of recharge, and the feasibility of the operation. It was determined through the use of the digital model that, with the given conditions in the area, 77 percent of the recharged water remained available for pumping. Economic analyses showed that water could be recharged inexpensively averaging about two dollars per acre foot.  相似文献   

5.
The objective of the Parafield Aquifer Storage Transfer and Recovery research project in South Australia is to determine whether stormwater from an urban catchment that is treated in a constructed wetland and stored in an initially brackish aquifer before recovery can meet potable water standards. The water produced by the stormwater harvesting system, which included a constructed wetland, was found to be near potable quality. Parameters exceeding the drinking water guidelines before recharge included small numbers of fecal indicator bacteria and elevated iron concentrations and associated color. This is the first reported study of a managed aquifer recharge (MAR) scheme to be assessed following the Australian guidelines for MAR. A comprehensive staged approach to assess the risks to human health and the environment of this project has been undertaken, with 12 hazards being assessed. A quantitative microbial risk assessment undertaken on the water recovered from the aquifer indicated that the residual risks posed by the pathogenic hazards were acceptable if further supplementary treatment was included. Residual risks from organic chemicals were also assessed to be low based on an intensive monitoring program. Elevated iron concentrations in the recovered water exceeded the potable water guidelines. Iron concentrations increased after underground storage but would be acceptable after postrecovery aeration treatment. Arsenic concentrations in the recovered water continuously met the guideline concentrations acceptable for potable water supplies. However, the elevated concentration of arsenic in native groundwater and its presence in aquifer minerals suggest that the continuing acceptable residual risk from arsenic requires further evaluation.  相似文献   

6.
Abstract: Interactions between surface irrigation water, shallow ground water, and river water may have effects on water quality that are important for both drinking water supplies and the ecological function of rivers and floodplains. We investigated water quality in surface water and ground water, and how water quality is influenced by surface water inputs from an unlined irrigation system in the Alcalde Valley of the Rio Grande in northern New Mexico. From August 2005 to July 2006, we sampled ground water and surface water monthly and analyzed for concentrations of major cations and anions, specific conductance, pH, dissolved oxygen, and water levels. Results indicate that irrigation ditch seepage caused an increase in ground water levels and that the Rio Grande is a gaining stream in this region. Temporal and spatial differences were found in ion concentrations in shallow ground water as it flowed from under the ditch toward the river. Ground‐water ion concentrations were higher when the ditch was not flowing compared with periods during peak irrigation season when the ditch was flowing. Ditch inputs diluted ion concentrations in shallow ground water at well positions near the ditch. Specifically, lower ion concentrations were detected in ground water at well positions located near the ditch and river compared with well positions located in the middle of an agricultural field. Results from this project showed that ditch inputs influenced ion concentrations and were associated with ground‐water recharge. In arid region river valleys, careful consideration should be given to management scenarios that change seepage from irrigation systems, because in some situations reduced seepage could negatively affect ground‐water recharge and water quality.  相似文献   

7.
姚光德 《四川环境》1991,10(2):36-42
本文将地面水质视作灰色系统,对某河段的化学耗氧量(COD),生化耗氧量(BOD_5)用灰色预测模型GM(1,1)进行建模、预测。最大误5.2%,平均误差小于0.2%,模型精度高。建模需要的数据较少,对数据的分布无特殊要求,方法和计算简单,实用价值大,是地面水质预测预报的一种有效方法。  相似文献   

8.
ABSTRACT: Current water quality policies in California require disposal of saline blowdown waters from power plants in sealed evaporation ponds to avoid degradation of ground waters. This policy highlights the conflict between increased energy demands, increasing scarcity of water, and environmental priorities. Saline blowdown waters can be used for the irrigation of salt tolerant crops, albeit with some reduction in yields. The results of experiments intended to specify these yield reductions are reported. If such irrigation is carefully managed, the soil profile can be used to store residual salts and ground water degradation will be avoided, provided that irrigation ceases before the salts are leached to the ground water. An analysis of discharge below a carefully managed irrigation project shows that the downward movement of salts below the root zone is no worse than with conventional methods of disposal. Thus, irrigation reuse with blowdown water is shown to be a viable means of saline water disposal while maintaining existing standards of ground water quality protection. Further analysis demonstrates the economic feasibility of such irrigation reuse by showing that it is significantly less costly than the evaporation pond alternative.  相似文献   

9.
The concentration of CO2 in air near the ground needs to be predicted to assess environmental and health risks from leaking underground storage. There is an exact solution to the advection–diffusion equation describing trace gases carried by wind when the wind profile is modeled with a power-law dependence on height. The analytical solution is compared with a numerical simulation of the coupled air–ground system with a source of CO2 underground at the water table. The two methods produce similar results far from the boundaries, but the boundary conditions have a strong effect; the simulation imposes boundary conditions at the edge of a finite domain while the analytic solution imposes them at infinity. The reverse seepage from air to ground is shown in the simulation to be very small, and the large difference between time scales suggests that air and ground can be modeled separately, with gas emissions from the ground model used as inputs to the air model.  相似文献   

10.
Porosity and permeability of porous and fractured geological media decrease with the exploitation of formation fluids such as petroleum, natural gas, or ground water. This may result in ground subsidence and a decrease of recovery of petroleum, natural gas, or ground water. Therefore, an evaluation of the behavior of permeability and porosity under formation fluid pressure changes is important to petroleum and ground water industries. This study for the first time establishes a method, which allows for the measurement of permeability, porosity, and pore size distribution of cores simultaneously. From the observation of the pore size distribution by low-field nuclear magnetic resonance (NMR) relaxation time spectrometry the mechanisms of pressure-dependent porosity and permeability change can be derived. This information cannot be obtained by traditional methods. As the large-size pores or fractures contribute significantly to the permeability, their change consequently leads to a large permeability change. The contribution of fractures to permeability is even larger than that of pores. Thus, the permeability of the cores with fractures decreased more than that of cores without fractures during formation pressure decrease. Furthermore, it did not recover during formation pressure increase. It can be concluded that in fractures, mainly plastic deformation takes place, while matrix pores mainly show elastic deformation. Therefore, it is very important to keep an appropriate formation fluid pressure during the exploitation of ground water and petroleum in a fractured formation.  相似文献   

11.
ABSTRACT: In this paper, a system approach to water resources development in Tehran Metropolitan Area, with its complex system of water supply and demands, is discussed. Water resources in this region include water storage in the Lar, Latyan, and Karaj reservoirs, the Tehran aquifer, as well as water discharge in local rivers and in drainage channels (mainly supplied by urban runoff and wastewater). This study consists of three phases of long‐term water resources planning and management in the Tehran metropolitan area. In each phase, a different level of details among different components of the system is considered. In the first phase, optimal operating policies for Tehran reservoirs and a decision support system are developed. In the second phase, interactions between surface and ground water resources as well as surface runoffs and wastewater disposal in different subareas are investigated. The water table fluctuations as a result of implementing sewerage collection project was also simulated. In the last phase, long‐term scenarios for water resources and agricultural development in the Southern part of Tehran are defined, and the effects of each scenario on the quality and quantity of surface and ground water resources are studied.  相似文献   

12.
The purpose of this paper is to share our ideas and experience of developing and applying stakeholder analysis to natural resource management, and to stimulate further development of its concepts and methodologies. Stakeholder analysis emerged in response to the perceived deficiency of conventional economic and social approaches for assessing and designing projects and policies. It is emphasized, however, that it is intended to complement rather than replace existing methods. The paper sets out the principles of stakeholder analysis (SA) and provides indicative guidelines for conducting SA in different situations. SA is an approach and procedure for gaining an understanding of a system by means of identifying the key actors or stakeholders in the system, and assessing their respective economic interests in that system. It is shown to have particular advantages for getting to the heart of many natural resource problems and for understanding the conflicts of interest and trade offs that may threaten the success of a project or policy. The paper discusses the origins of SA, the contexts of its application, how one goes about it, and quotes examples from northern Thailand .  相似文献   

13.
Abstract: Water industry experts have been arguing that the traditional techniques are not an accurate means of measuring water contamination. This is mainly because these techniques emphasize neither the stochastic nature of the water contamination process nor the precision and the accuracy of the tested methods used by environmental laboratories. In this work, we describe the development and application of prototype Dynamic Bayesian Networks (DBNs) that model ground‐water quality to determine the impact of chemical contaminants on ground‐water quality in the Salalah area, which is allocated to the south of Oman. We also present a new technique for data pre‐processing because it is needed for the treatment of ground‐water datasets that are used as the data source to learn the probabilities for dynamic decision models. Among more than 20 wells in area, only four wells were selected to be analyzed and the results show that we achieved an acceptable level of efficiency.  相似文献   

14.
ABSTRACT: A general methodology to study the economics of dual water systems (defined here as a separate distribution system for untreated low quality local surface Water for outdoor municipal water supply) is summarized and the application of the method to a rapidly growing city is presented. In the first step, a cost-benefit criterion for evaluating dual systems is developed. The criterion is then extended to a dynamic case where the population to be served increases with time and where the dual system is allowed to expand. The optimal investment time to introduce the dual water supply project is obtained by maximizing social welfare. The model is applied to the city of West Jordan, Utah, where a dual system is currently being proposed. Model results indicate that for the city as a whole dual supply is not economically feasible. However, when the model is applied to a part of the city, it is found feasible and the optimal time to initiate the project would be in the year 1989.  相似文献   

15.
ABSTRACT: Increasing demands on western water are causing a mounting need for the conjunctive management of surface water and ground water resources. Under western water law, the senior water rights holder has priority over the junior water rights holder in times of water shortage. Water managers have been reluctant to conjunctively manage surface water and ground water resources because of the difficulty of quantification of the impacts to surface water resources from ground water stresses. Impacts from ground water use can take years to propagate through an aquifer system. Prediction of the degree of impact to surface water resources over time and the spatial distribution of impacts is very difficult. Response functions mathematically describe the relationship between a unit ground water stress applied at a specific location and stream depletion or aquifer water level change elsewhere in the system. Response functions can be used to help quantify the spatial and temporal impacts to surface water resources caused by ground water pumping. This paper describes the theory of response functions and presents an application of transient response functions in the Snake River Plain, Idaho. Transient response functions can be used to facilitate the conjunctive management of surface and ground water not only in the eastern Snake River Plain basin, but also in similar basins throughout the western United States.  相似文献   

16.
A shallow-depth ground water area was investigated to identify the dominant processes governing the distribution of hydrocarbon contaminants and hydrogeochemical parameters. The ground water in the study site has been highly contaminated with petroleum hydrocarbons. A preliminary pump-and-treatment remediation technology was applied for 4 yr at the site. Multivariate analyses were applied to hydrogeochemical data obtained before and after the rainy season. The pump-and-treatment application, indigenous biodegradation, and mixing by precipitation recharge are the major factors or events involved in the distribution of geochemical parameters of the ground water in the study area. Site-specific artificial pavement also played an important role in the evolution of the ground water chemistry. A conventional graphical analysis method (Piper plot) of major ions did not effectively reveal these effects. In this study, we demonstrate the usefulness of multivariate analysis (factor and cluster analyses) using biodegradation indicator parameters, as well as major cations and anions, for the study of the ground water system in the hydrocarbon-contaminated site.  相似文献   

17.
This paper discusses strategies for the development of water resources, emphasizing the delivery of reliable water supplies, for both domestic and production purposes, to every village and to every farmer. This necessitates a shift of emphasis from the construction of large storage reservoirs to the construction, operation, and maintenance of water distribution systems capable of reaching the largest number of farms, and a shift from projects that benefit the few, to projects that benefit the many. Water distribution in this context takes on three interrelated meanings: a geographical meaning, a technical meaning, and an economic meaning. The geographical meaning focuses on the spatial distribution of the recipient population as a key to identifying the proper distribution of water projects in physical space. The technical meaning relates to the physical distribution of water through canal systems to the farmers' fields. The economic meaning refers to the equitable distribution of benefits from water projects. The paper provides an illustration of the need for an emphasis on distribution, using the state of development of water resources in northeast Thailand as an example, with a proposed program for the further development of these resources. The northeast, the poorest region in the country, has been recognized by the Government of Thailand as a priority area for accelerated regional development efforts.  相似文献   

18.
ABSTRACT: Fuels contained in underground storage tanks (USTs) are a major source of soil and ground water contamination. Effective management of the problem at the urban level is difficult due to a large number of tanks and a vast array of factors (e.g., tank characteristics, geology) that determine environmental hazards. The problem is compounded by frequent abandonment and reuse of service stations, which makes it difficult to track the status of underground tanks. Geographic information systems (GIS) are ideally suited to organizing location and attribute data for variables that are pertinent to the UST management problem. A GIS-based UST management system was developed and applied to 136 current and former gasoline service stations in Denton, Texas. The system is effective for tank inventory and can be applied in a proactive fashion to identify potentially problematic facilities. In the event of a leak or spill, the management system can support the implementation of reactive measures to mitigate subsurface contamination. Potential beneficiaries of such a system include planning departments, environmental regulatory agencies, emergency management officials, lending institutions, gasoline distributors, and oil companies.  相似文献   

19.
20.
Abstract: Water right transfers are one of the basic means of implementing changes in water use in the highly appropriated water resource systems of the western United States. Many of these systems are governed by the Prior Appropriation Doctrine, which was not originally intended for application to ground‐water pumping and the conjunctive management of ground water and surface water, and thus creates an administrative challenge. That challenge results from the fact that ground‐water pumping can affect all interconnected surface‐water bodies and the effects may be immeasurably small relative to surface water discharge and greatly attenuated in time. Although we may have the ability to calculate the effects of ground‐water pumping and transfers of pumping location on surface‐water bodies, mitigating for all the impacts of each individual transfer is sufficiently inefficient that it impedes the transfer process, frustrates water users, and consequently inhibits economic development. A more holistic approach to ground‐water right transfers, such as a ground‐water accounting or banking scheme, may adequately control transfer third‐party effects while reducing mitigation requirements on individual transfers. Acceptance of an accounting scheme can accelerate the transfer process, and possibly reduce the administrative burden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号