首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study was undertaken to evaluate peak runoff flow rates using (1) a continuous series of actual rainfall events and (2) design storms. The ILLUDAS computer model was used to simulate runoff over a catchment within the city of Montreal, Canada. A ten-year period, five-minute increment rainfall data base was used to derive peak flow frequency curves. Two types of design storms were analyzed: one derived from intensity duration frequency curves (Chicago type), the other from averaging actual rainfall patterns (Huff type). Antecedent soil moisture conditions were considered in the analyses. It was found that the probability distribution of runoff peak flow was sensitive to the choice of design storm pattern and to the antecedent soil moisture condition. A symmetrical, Chicago-type design storm with antecedent dry soil moisture produced a flow frequency curve similar to the one obtained from a series of historical rainfall events.  相似文献   

2.
ABSTRACT: Rainfall and runoff data from 485 storms during the summers of 1979–84 were evaluated to characterize storm runoff volumes (SF) and peak flows (QP) for 13 small watersheds in the Blue Mountains of eastern Oregon and to determine differences among grazing intensities and vegetation types. Storm hydrographs were separated by using watershed-specific baseflow rise rates of 0.002–0.013 cfsm/hr. Median SF and QP were 0.0014 in and 0.43 cfsm, respectively, for all storms. Total storm rainfall (PPT) and initial flow (QI) were important stepwise regression variables in accounting for the variation in SF and peak flow above initial flow (QPI); 30- and 60-mm rainfall intensities and rainfall duration were relatively unimportant. Two classes of vegetation were evaluated: (1) western larch-Douglas-fir (nine watersheds), and (2) other (four watersheds representing fir-spruce, lodgepole pine, mountain meadow, and ponderosa pine). Mean SF and QP did not differ (P=0.05) among vegetation classes but significant differences were apparent in the relation of SF to PPT and QI, and QPI to PPT and QI. As PPT and QI increased, SF and QPI from larch-Douglas-fir watersheds increased at a slower rate than they did from the other watersheds. Four levels of grazing intensity had no effect on storm runoff.  相似文献   

3.
ABSTRACT: A relatively simple nonlinear equation was fitted to 468 stormflows larger than 0.05 area inches on 11 forested basins from New Hampshire to South Carolina, providing a predictive method for use on forest and wildlands in humid regions. Stormflow in area inches (Q?) was: where R is the mean value of Q/P for all P larger than one inch, P is storm rainfall in inches, and I is the initial flow rate in ft3/sec/mi2. S.E. was 0.3 inch of stormflow. Peakflow was similarly estimated, S.E. 26 ft3/sec/mi2. The R-index method is proposed as a practical tool in forest and wildland management. Similar to the SCS runoff curve number method, the R-index method requires no prior assumptions about infiltration capacities of forest lands, but calls for the mapping of all first-order streams for the average storage capacity index R, i.e., the mean hydrologic response of the source areas. Tested against the runoff curve method on four independent basins, predictions by the R-index method were considerably more accurate when field information normally available to planners and managers was used in both methods.  相似文献   

4.
ABSTRACT: A study was conducted to determine the effects of mining and reclaiming originally undisturbed watersheds on surface-water hydrology in three small experimental watersheds in Ohio. Approximately six years of data were collected at each site, with differing lengths of premining (Phase 1), mining and reclamation (Phase 2), and post-reclamation (Phase 3) periods. Mining and reclamation activities showed no consistent pattern iii base-flow, and caused slightly more frequent higher daily flow volumes. Phase 2 activities can cause reductions in seasonal variation in double mass curves compared with Phase 1. Restoration of seasonal variations was noticeably apparent at one site during Phase 3. The responses of the watersheds to rainfall intensities causing larger peak flow rates generally decreased due to mining and reclamation, but tended to exceed responses observed in Phase 1 during Phase 3. Natural Resources Conservation Service (NRCS) curve numbers increased due to mining and reclamation (Phase 2), ranging from 83 to 91. During Phase 3, curve numbers remained approximately constant from Phase 2, ranging from 87 to 91.  相似文献   

5.
ABSTRACT: Storm water detention is an effective and popular method for controlling the effects of increased urbanization and development. Detention basins are used to control both increases in flow rates and sedimentation. While numerous storm water management policies have been proposed, they most often fail to give adequate consideration to maintenance of the basin. Sediment accumulation with time and the growth of grass and weeds in the emergency spillway are two maintenance problems. A model that was calibrated with data from a storm water detention basin in Montgomery County, Maryland, is used to evaluate the effect of maintenance on the efficiency of the detention basin. Sediment accumulation in the basin caused the peak reduction factor to decrease while it increased as vegetation growth in the emergency spillway increased. Thus, the detention basin will not function as intended in the design when the basin is not properly maintained. Thus, maintenance of detention basins should be one component of a comprehensive storm water management policy.  相似文献   

6.
ABSTRACT: Information is lacking on the watershed scale effects of mining and reclaiming originally undisturbed watersheds for coal on surface water chemical concentrations and load rates for a variety of constituents. These effects were evaluated on three small, geologically dissimilar watersheds subjected to surface mining in Ohio. Comparisons were made between phases of land disturbances using ratios of average concentrations and load rates: Phase 1 (natural), subphases of Phase 2 (mining and reclamation), and subphases of Phase 3 (partial reclamation and final condition) using 4,485 laboratory analyses of 34 constituents. Average concentration and load rate ratios were categorized into three classes—minor, moderate, and substantial. Mining and reclamation (M/R) affected flow duration curves in different ways‐baseflow changes were variable, but high flows generally increased. The average concentration ratios for all sites were classified as 15 percent “minor,” 36 percent “moderate,” and 49 percent “substantial” (average ratio of 2.4.) Generally load rate ratios increased due to mining and reclamation activities (average ratio of 3.3). Minor, moderate, and substantial impacts were found on average for 7 percent, 23 percent, and 70 percent, respectively, of load rate ratios. The impact of M/R on average load rates was not necessarily the same as on average concentrations due to changed hydrology and can be opposite in effect. The evaluation of the impacts of M/R requires knowledge of changing hydrologic conditions and changing supplies and rates of release of chemicals into streams. Median sediment concentration ratio is an indicator of average constituent load rate ratio of a wide variety of chemical constituents and is useful for development of best management practices to reduce chemical loads. The site at which diversion ditches were not removed during final reclamation sustained large chemical load rates, and removal of diversions at the other mined site reduced load rates. Revegetation of poorly reclaimed areas decreased chemical load rates. Chemical load rates were sensitive to geology, mining, and reclamation methods, diversions, and changing hydrology, concentration flow rate regressions, and watershed areas.  相似文献   

7.
ABSTRACT: A hydrologic budget was prepared for two geologically different wetland basins in eastern Massachusetts for the 1971 water-year. Water table conditions prevailed at one wetland underlain by peat while an artesian system functioned at the other wetland which was underlain by muck. Hydrologic responses were generally similar at both wetlands, although each functioned differently in detail. Both wetlands exhibited high spring discharges and depressions of low flow. Ground water accounted for an estimated 93% of the total annual discharge from both wetlands; in late summer the peat deposit recharged the regional ground water body. Evapotranspiration in the spring was retarded in probable consequence of the extreme wetness of the wetland soils.  相似文献   

8.
ABSTRACT. In order to demonstrate the feasibility of a nonparametric statistical application in investigating the hydrologic impact of the rapid land use change accompanying intense urbanization, annual maximum peak flow data from an actual example (the Northeast Branch Basin, a recently urbanized Washington, D.C., suburban watershed) were analyzed. Annual peak flow data from the Patuxent Basin above Unity, Maryland, a rural watershed in close proximity to the study area, were compared to data from the Northeast Branch for the Same period utilizing the Wilcoxon matched-pairs signed-ranks test. A change in central tendency of each series was noted at the 0.01 significance level; however, the change was negative in the rural basin and positive in the urbanized Northeast Branch Basin. This central tendency change was considered indicative of an average decrease in the size of rainstorms producing annual maximum peak discharges. Rainstorm data from the Northeast Branch Basin were divided into two equal periods (before urbanization and after) and the Wilcoxon test was applied. It was found that rainstorms producing maximum annual peak discharges in the urbanized period were indeed smaller than those in the prior period (0.01 level of significance); however, larger annual peaks were produced. It was concluded that nonparametric statistical methods can be used readily with conventional methods to isolate and clearly analyze the various problems in an actual urban hydrologic study.  相似文献   

9.
The effects of water quality on brine discharged from oil and gas recovery operations are described for surface water and ground water in two small watersheds in eastern Kentucky. The brine, which had salinity that was often several times that of sea water, led to significantly higher concentrations of several minerals in surface water, particularly in the first and second order streams. Concentractions as high as 50,000 mg/I for sodium and 64,000 mg/I for chloride were measured in streams. The. differences in chemical concentrations for various chemicals over the period of the study were ascribed to temporal variability, particularly due to differences between wet and dry seasons, and to spatial variability, particularly due to dilution and other chemical decay processes. Chemical decay coefficients for sodium and chloride were developed as a function of watershed area for possible application to similar watersheds. There was some evidence that the brine was influencing the Licking River, the major stream that drains the eastern part of Kentucky.  相似文献   

10.
ABSTRACT: Data from a small forested catchment were used to model peak stream flow as a function of basic hydrologic variables associated with 112 rain storms. Rainfall depth and initial stream flow rate accounted for 87.1 percent of peak flow variability. Forty expressions of rainfall intensity (describing both the temporal sequence of intensity for 20 equal storm intervals, and maximum intensity for 20 separate interval lengths) were used in an attempt to improve the predictability of basic models. None of the intensity parameters improved predictability by as much as 2 percent, apparently because the most intense rainfall bursts generally occurred near the beginning of storm periods. Mean rainfall intensity for entire storms was generally as effective as any of the shorter interval intensities, and its use helped to linearize the relationship between peak flow and rainfall depth and duration.  相似文献   

11.
ABSTRACT: The purpose of this paper is to present a new approach for the spatially distributed modeling of water flow during storm events. Distributed modeling of flow during storm events is an important basis for any environmental modeling, including turbidity or sediment transport. During the initial phase of a rainstorm, surface runoff is the main contributor of flow. To provide the spatial components for distributed hydrological modeling a Geographic Information System (GIS) was used to map and visualize contributing areas around a stream channel. Stream segments were defined using the hydrologic response unit (HRU) concept. Lateral flows were derived from GIS output for each segment of the stream and at each time interval of the rain storm and were routed using the kinematic routing equation. This approach is new in hydrological modeling and can be used to enhance many existing simulations. The model is also unique in the fine time scale (i.e., intervals are on the order of minutes). Model results showed good correlation with measured discharge values; however, further studies of contributing area behavior, its relationship with soil types and slope categories, and the influence of watershed size are needed to improve model performance. This model will be used in the future as the basis to model turbidity in streams.  相似文献   

12.
ABSTRACT: Prior to PL95–87 little research had been conducted to determine the impacts of mining and reclamation practices on sediment concentrations and yields on a watershed scale. Furthermore, it was unknown whether sediment yield and other variables would return to undisturbed levels after reclamation. Therefore, three small watersheds, with differing lithologies and soils, were monitored for runoff and suspended sediment concentrations during three phases of watershed disturbances: undisturbed watershed condition, mining and reclamation disturbances, and post‐reclaimed condition. Profound increases in suspended‐sediment concentrations, load rates, and yields due to mining and reclamation activities, and subsequent drastic decreases after reclamation were documented. Even with increases in runoff potential, reductions in suspended‐sediment concentrations and load rates to below or near undisturbed‐watershed levels is possible by using the mulch‐crimping technique and by removing diversions. Maximum concentrations and load rates occurred during times of active disturbances that exposed loose soil and spoil to high‐intensity rains. Sediment concentrations remained elevated compared with the undisturbed watershed when diversions were not well maintained and overtopped, and when they were not removed for final reclamation. Diversions are useful for vegetation establishment, but should be maintained until they are removed for final reclamation after good vegetative cover is established.  相似文献   

13.
ABSTRACT: Both catchment experiments and a review of hydrologic processes suggest a varying effect of forest harvest on the magnitude of peak flows according to the cause of those peak flows. In northwestern Montana and Northeastern Idaho, annual maximum flows can result from spring snowmelt, rain, mid-winter rain-on-snow, or rain-on-spring-snowmelt. Meteorologic and physical data were used to determine the cause of annual maximum flows in six basins which had the necessary data and were smaller than 150 mi2. Rain-on-spring-snowmelt was the most frequent cause of annual maximum flows in all six basins, although there was a strong gradient in the magnitude and cause of peak flows from southwest to northeast. Less frequent mid-winter rain-on-snow events caused the largest flows on record in four basins. Mid-winter rain-on-snow should be distinguished from rain-on-spring-snowmelt because of differences in seasonal timing, the relative contributions of rain vs. snowmelt, and the projected effects of forest harvest. The effects of mixed flood populations on the flood-frequency curve varied from basin to basin. Annual maximum daily flows could not be reliably predicted from rainfall and snowmelt data.  相似文献   

14.
ABSTRACT: Forest land managers are concerned about the effects of logging on soil erosion, streamflow, and water quality and are promoting the use of Best Management Practices (BMPs) to control impacts. To compare the effects of BMP implementation on streamwater quality, two of three small watersheds in Kentucky were harvested in 1983 and 1984, one with BMPs, the other without BMPs. There was no effect of clearcutting on stream temperatures. Streamflow increased by 17.8 cm (123 percent) on the BMP watershed during the first 17 months after cutting and by 20.6 cm (138 percent) on the Non-BMP watershed. Water yields remained significantly elevated compared to the uncut watershed 8 years after harvesting. Suspended sediment flux was 14 and 30 times higher on the BMP and Non-BMP Watersheds, respectively, than on the uncut watershed during treatment, and 4 and 6.5 times higher in the 17 months after treatment was complete. Clearcutting resulted in increased concentrations of nitrate, and other nutrients compared to the uncut watershed, and concentrations were highest on the non-BMP watershed. Recovery of biotic control over nutrient losses occurred within three years of clearcutting. The streamside buffer strip was effective in reducing the impact of clearcutting on water yield and sediment flux.  相似文献   

15.
ABSTRACT: The purpose of this study was to evaluate the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) watershed management system. BASINS data were used with the NPSM model to predict discharge and sediment concentrations at the outlet of a 103 km2 Ohio watershed. It was concluded that the NPSM model should always be calibrated but only a few of the parameters provided with BASINS needed to be calibrated. For a three‐year study period, there was a 2 percent underestimation of discharge using area weighted precipitation values and a 25 percent overestimation using the single station data in BASINS. A comparison of observed and predicted monthly discharge resulted in an r2 of 0.86 with area‐weighted precipitation and an r2 of 0.74 with the single station data. Calibrating the model to substantially improve sediment predictions was unsuccessful and we concluded that a calibration period of one year was too short. For the three‐year study period, the r2 for sediment was 0.36 with a slope of 0.37 and an intercept of 18.8 mg/l. The mean observed and predicted sediment concentrations were 27.1 mg/l and 22.6 mg/l, respectively.  相似文献   

16.
This paper examines the relationships between measurable watershed hydrologic features, base flow recession rates, and the Q7,10 low flow statistic (the annual minimum seven‐day average streamflow occurring once every 10 years on average). Base flow recession constants were determined by analyzing hydrograph recession data from 24 small (>130 km2), unregulated watersheds across five major physiographic provinces of Pennsylvania, providing a highly variable dataset. Geomorphic, hydrogeologic, and land use parameters were determined for each watershed. The base flow recession constant was found to be most strongly correlated to drainage density, geologic index, and ruggedness number (watershed slope); however, these three parameters are intercorrelated. Multiple regression models were developed for predicting the recession rate, and it was found that only two parameters, drainage density and hydrologic soil group, were required to obtain good estimates of the recession constant. Equations were also developed to relate the recession rates to Q7,10 per unit area, and to the Q7,10/Q50 ratio. Using these equations, estimates of base flow recession rates, Q7,10, and streamflow reduction under drought conditions can be made for small, ungaged basins across a wide range of physiography.  相似文献   

17.
ABSTRACT: Clearcutting aspen from the upland portion of an upland peatland watershed in north central Minnesota caused snowmelt peak discharge to increase 11 to 143 percent. Rainfall peak discharge size increased as much as 250 percent during the first two years after clearcutting, then decreased toward precutting levels in subsequent years. Storm flow volumes from rain during the first two years increased as much as 170 percent but declined to preharvest volumes in the third year. Snowmelt volumes did not significantly change. Snowmelt peak discharge occurred about four to five days earlier after clearcutting, but the timing of storm flow from rainfall was not changed. Snowmelt peaks remained above precut size for nine years after clearcutting on an area undergoing natural regeneration to aspen saplings. Partial cutting - up to approximately one-half of the watershed - reduced peak snowmelt discharge because melt was desynchronized in cleared and forested parts. Clearing more than 2/3 of the watershed caused snowmelt flood peak size to double during years with snow packs in excess of seven inches of water that remained until a day when maximum air temperatures exceeded 60d?F.  相似文献   

18.
ABSTRACT: Storm runoff from four characteristic types of residential roofs and incident rainwater were monitored for 47 storm events over a six-month period at Nacogdoches, Texas, to study water quality conditions for 20 element and four chemical variables. The total element concentration in storm runoff from each roof type was greater than that of rainwater in the open. Differences in element concentrations in storm runoff among the four roof types were statistically significant (α≤ 0.05) with the differences for the wood shingle roof being the greatest and that for terra cotta clay roof being the least. The median concentrations of four element variables exceeded the Texas surface water quality standards, while 12 variables exceeded the standards at least one time in all samples collected. Zinc concentrations violated the Standard ranging from 85.7 percent of the samples for the wood shingle roof to 66.0 percent for the composite shingle, the greatest exceedances of all 24 variables studied. Storm characteristics and gutter maintenance level had some effects on these water quality conditions. The study suggested that roof types can be important to water pollution management programs. More detailed studies on roof water quality in major municipalities are required.  相似文献   

19.
ABSTRACT: One hundred twenty-eight stream-crossing culverts in the central Oregon Coast Range were evaluated for peak flow capacity and were compared with current design guidelines. Their ability to pass the 25-year peak flow, as mandated by Oregon State Forest Practice Rules, and their maximum flow capacity were determined. Over 40 percent of the culverts were unable to pass the 25-year peak flow at a headwater to diameter ratio of 1. About 17 percent could not pass the 25-year peak flow without headwater overtopping the roadfill. Installing the next larger pipe size at an additional original installation cost of about 14 percent would have allowed nearly all these culverts to pass the 25-year peak flow. Culvert capacity varied with ownership and watershed size.  相似文献   

20.
ABSTRACT: Using data from 80 Oregon watersheds that ranged in size from 0.54 km2 to 27.45 km2, equations were developed to predict peak flows for use in culvert design on forest roads. Oregon was divided into six physiographic regions based on previous studies of flood frequency. In each region, data on annual peak flow from gaging stations with more than 20 years of record were analyzed using four flood frequency distributions: type 1 extremal, two parameter-log normal, three parameter-log normal, and log-Pearson type III. The log-Pearson type III distribution was found to be suitable for use in all regions of the State, based on the chi-square goodness-of-fit-test. Flood magnitudes having recurrence intervals of 10, 25, 50, and 100 years were related to physical and climatic characteristics of drainage basins by multiple regression. Drainage basin size was the most important variable in explaining the variation of flood peaks in all regions. Mean basin elevation and mean annual precipitation were also significantly related to flood peaks in two regions of western Oregon. The standard error of the estimate for the regression relationships ranged from 26 to 84 percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号