首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Urban stormwater runoff has been recognized as a potential major contributor of pollution to receiving waters. However the projected high costs of control have prompted an examination of the extent to which these impacts have been documented. A nationwide search was conducted for case studies demonstrating a cause-effect linkage between urban runoff and impairment of beneficial uses in receiving waters. The results indicate that numerous definitions of “impacts” are being used and that few substantive data exist to support many of these allegations. Results of a preliminary impact assessment are presented for the 248 urbanized areas of the United States. Then, the results of more recent efforts to assess these impacts in several case studies are described. This assessment demonstrates the critical need for additional short-term and long-term sampling programs.  相似文献   

2.
ABSTRACT: This paper describes a methodology for the evaluation of water quality plans analogous to procedures used in flood control planning, where flood damage frequency curves provide the basis for determining flood control benefits. The proposed method uses continuous water quality simulation to develop long term information from which water quality frequency curves can be obtained. This frequency information allows the evaluation of the impact of proposed water quality control plans taking into consideration the variable nature of the water resource. Using treatment costs and other economic indicators of water quality, the frequency information can be used to estimate the cost-effectiveness and economic efficiency of alternative plans. The method is demonstrated in a semi-hypothetical environment; real hydrologic and climatic characteristics are assigned to a hypothetical watershed configuration. Alternative management plans are simulated and analyzed for both physical and economic impacts. The advantages of continuous simulation and its use in water quality planning are explored.  相似文献   

3.
ABSTRACT: Urban runoff as well as industrial and agricultural discharges have seriously affected the water quality of the Skudai River, Malaysia. A water quality model is developed for simulating BOD and oxygen relationship. The simulated values agree relatively well with survey data taken during low flow conditions. Survey and simulated values show that a pollution abatement program is needed to prevent further deterioration of the river from organic discharges. A systems approach, involving complete analysis of water quality models and environmental control procedures, considering various water use patterns, water quality criteria, and waste input, is essential for solution.  相似文献   

4.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics.  相似文献   

5.
ABSTRACT: An application of the receiving water block of the EPA Storm Water management Model (SWMM) is presented to quantify water quality impacts and evaluated control alternatives for a 208 areawide waste water management plan in Volusia Country, Florida. The water quality impact analyses were conducted for dry-and wet-weather conditions to simulate dissolved oxygen (DO), chlorides, total nitrogen (TN), and total phosphorus (TP) in the Halifax Rivers, Florida, a 40-kilometer-long tidal estuary located on the Atlantic coast of Florida near Daytona Beach. Dry-weather analysis was performed using conventional 7-day, 10-year low flow conditions to determine a set of unit transfer coefficients which estimate the pollutant concentration transferred to any point in the estuary from a constant unit discharge of pollutants at the existing waste water treatment plant outfall locations. Wet-weather analysis was performed by continuous simulation of a typical three-month summer wet season in Florida. Three-month cumulative duration curves of DO, TN and TP concentrations were constructed to estimate the relative value of controlling urban runoff of waste water treatment plant effluent on the Halifax River. The three-month continuous simulation indicated that the greatest change in DO, TN, and TP duration curves is possible by abatement of waste water treatment plant pollution.  相似文献   

6.
ABSTRACT: Nonstorm water discharges to municipal separate storm sewer systems (MS4s) are notable for spatial and temporal variability in volume, pollutant type, pollutant concentration, and activity of origin. The objective of this paper was to determine whether current technical knowledge and existing U.S. policy support an improved regulatory approach. The proposed policy would use type of discharge as a regulatory basis, merging the concepts of allowability of de minimis discharges and type-based statewide consistent rules. Specific research objectives were to comprehensively identify discharge types, characterize their prevalence in California, analyze relevant local and regional regulatory guidelines, and systematically evaluate opinions of experts about potential water quality impacts. Results demonstrate nonstorm water discharges were widespread in at least one sector, industrial facilities subject to a state permit; one discharge for every four facilities was reported in 1995, even though the permit explicitly prohibits such discharges. Clear consensus exists for minimal water quality concern for some discharge types when considering both municipal guidelines and experts’ opinions. In particular, condensate from a wide range of equipment and discharges from fire fighting equipment testing were found to be of low concern. Discharge types with consensus high concern were largely limited to discharges prohibited under other regulations, such as wastewater and hazardous waste management controls. Some discharge types where no consensus was identified, such as landscape irrigation, nevertheless generated concern for water quality impacts and appear to be relatively widespread. Available information supports technical feasibility of the proposed policy because at least some discharge types show strong consensus for de minimis impacts among regulatory guidelines and opinions of technical experts.  相似文献   

7.
ABSTRACT: Storm water runoff studies of three small basins (20, 40, and 58 acres) in the Fort Lauderdale area of Florida were conducted by the U.S. Geological Survey in 1974–78. The basins were homogeneously developed with land uses being: commercial, single family residential, and high traffic volume highway. Synchronized data were collected for rainfall, storm water discharge, storm water quality, and bulk precipitation (rainfall plus dry fallout) quality. Analysis of the storm water discharge data showed that most runoff was from impervious areas hydraulically connected to drain inlets. Regression analyses of the storm water discharge and water quality data indicated that storm loads from the single family residential area correlated strongly with peak discharge and length of antecedent dry periods. Storm loads from the highway area correlated strongly with rainfall and less strongly with peak discharge and antecedent dry periods. Storm loads from the commercial area correlated strongly with peak discharge and rainfall, and less strongly with antecedent dry periods. On a unit area basis, the single family residential area yielded the largest loads of nitrogen, phosphorus, and dissolved solids. The commercial area yielded the largest loads of lead, zinc, and chemical oxygen demand. Yields of carbon were about the same for the three areas. Constituent loadings derived directly from the atmosphere were estimated on the basis of bulk precipitation samples and compared with storm runoff loads from the highway and commercial areas.  相似文献   

8.
ABSTRACT: The effects of an artificial lake system upon the runoff hydrology of a small watershed have been determined by comparing the quantity and quality of runoff with that of an adjacent and similar watershed containing no lakes. Lake storage reduced peak discharge and slowed flood recession rate downstream. Water stored within the lakes is generally of different quality than downstream surface runoff. Salt stored in the lakes from winter deicing is released during periods of surface runoff throughout the rest of the year. During summer or fall runoff events, lake outflow dominates the salt load of the outlet stream, generating double-peaked load hydrographs in which the second, or lake-induced, crest is many times larger than the peak which corresponds to maximum flow. On the other hand, the lakes cause a reduction of salt loads and concentration in winter runoff. The concentration and loads of ions which are not related to road salt are generally less affected by the lakes, although they are increased substantially in the fall.  相似文献   

9.
ABSTRACT: Optimal policies for supplying rapidly expanding urban centers with additional water supplies are shown to be dependent on water quality goals for the urban effluent. As effluents are required to meet increasingly stringent standards, the unit costs associated with adding capacity to existing wastewater treatment systems to renovate some waters for reuse are shown to substantially decrease. A nonlinear elimination algorithm is developed to delineate optimal policies. A model employing the technique was applied to the wastewater treatment system of a typical urban system and the water quality objectives varied. A comparison of costs with and without various levels of reuse were made and unit costs of reused water under these conditions determined.  相似文献   

10.
ABSTRACT: The impact of various urban land uses on water flow and quality in streams is being studied by monitoring small streams in the Milwaukee urban area. This paper compares the responses of an urban watershed and an agricultural watershed to an autumn rainfall of 2.2 cm. Flow from the urban basin showed a substantially greater response to the rain than that from the rural. Dilution, resulting from the greater quantities of surface runoff in the urban watershed, caused lower concentrations of sodium, chloride, calcium, magnesium, bicarbonate and total dissolved solids in the urban stream. The total quantity of these materials removed per unit drainage area of the urban basin was much greater, however. Road salt was still among the dominant dissolved materials in the urban water chemistry seven months after the last road salting. Sodium was apparently being released from adsorption by clays in the urban basin. Suspended sediment concentrations and total loads were higher in the urban stream.  相似文献   

11.
ABSTRACT: The Pawtuxet River flows from a relatively rural area through some of the more highly industrialized sections of Rhode Island. During its journey, the river receives many municipal, industrial, and ground water sources of metal constituents. The present report is the first in a two part series in which the water quality of this urban river was evaluated by a chemical monitoring study of the sources, transport mechanisms, and fate of cadmium, chromium, copper, lead, and nickel in the river. The second paper will use the chemical data to derive and calibrate a steady-state water quality model for this river. The metal concentrations In the river tended to increase from the headwaters to the mouth with river stations nearest to point source outfalls showing elevated values. In some sections of the river, levels of a few of the metals could not be explained by the point sources; and other inputs, including sediment resuspension, axe proposed to make up this apparent unbalance. The ability of a municipal secondary treatment plant to remove metals was demonstrated, and the tie-in of the effluent from a major chemical company to the plant did not cause any observable deterioration in treatment efficiency.  相似文献   

12.
ABSTRACT: A comprehensive study was conducted to implement the Storm Water Management Model (SWMM) for urban areas in Kuwait. The updated version of the model designed to run on an IBM Personal Computer and compatibles (PCSWMM3.2C) was utilized. The study revealed that urban runoff simulation in arid areas by the SWMM model is a powerful and efficient tool in designing drainage systems and as such, a viable replacement of the commonly used rational method. It was found that only the streets and paved areas that are hydraulically connected to the drainage system contribute to runoff. Fine and coarse discretization approaches were used in the study. The difference between the hydrographs simulated by the two approaches were relatively small. The performance of the existing drainage system and the accuracy of the design method used were tested using a 25-year storm. The result of the simulation revealed that the storm sewers were oversized by factors ranging from 1.2 to 3.6. The SWMM model was used to estimate the storm water runoff volume collected from all urbanized areas in Kuwait City. The annual expected harvested runoff water was found to be significant; however, the quality of runoff water needs to be assessed before a decision is made on its reuse.  相似文献   

13.
ABSTRACT: This paper describes the Continuous Stormwater Pollution Simulation System (CSPSS) as well as a site-specific application of CSPSS to the Philadelphia urban area and its receiving water, the Delaware Estuary. Conceptually, CSPSS simulates the quantity and quality or urban stormwater runoff, combined sewer overflow, municipal and industrial waste water effuent, and upstream flow on a continuous basis for each time step in the simulation period. In addition, receiving water dissolved oxygen, suspended solids, and lead concentrations resulting from these pollutant sources may be simulated. However, only rceiving water dissolved oxygen (DO) response is considered in this paper. The continuous Do receiving water response model was calibrated to existing conditions usinv observed data at Chester, Pennsylvnia, located on the Delaware Estuary approximately 10 miles down stream from the study area. Average annual pollutant loads to the receiving water were estimated for all major sources and receiving water quality improvements resulting from removal of various portions of these pollutant loads were estimated by application of the calibrated stimultion model. It was found that the removal of oxygen-demanding pollutants from combined sewer overflow and urban stormwater runoff would result in relatively minor improvements in the overall dissoved oxygen resources of the Delaware Estuary; whereas. removal of oxygen demanding pollutants from waste water treatment plant effluent would result in greater improvemens. The results of this investigation can be used along with appropriate economic techniques to identify the most cost-effective mix of point and nonpoint source pollution control measures.  相似文献   

14.
ABSTRACT: This paper describes the formulation of an Index of Water Quality to evaluate the level of pollution in fresh water. A Four-Round Delphi equation, using a panel of seven nationally recognized water scientists, was performed to ascertain the pollutants to be included in the index, the relationship between the quantity of these pollutants in the water and the resulting quality of the water, and the importance of each pollution variable to each water use as well as to overall pollution. A multiplicative index was used to bring the pollutants together into one system.  相似文献   

15.
ABSTRACT: This study was to designed to determine concentrations of selected metals, organic compounds, pesticides, and conventional pollutants in stormwater runoff from two North Carolina businesses in each of the following five general industrial groups: auto salvage, metal fabrication, scrap and recycling, vehicle maintenance, and wood preserving facilities. The sampling procedure involved collecting a first flush sample of runoff from a single storm event and both first flush and composite samples of runoff from three consecutive storm events. Analysis of samples collected during the first flush indicated that zinc and copper were the most common of the 13 metals included in the analysis. Additional analysis documented that several volatile organic, semi-volatile organic, or pesticide compounds including acrolein, methylene chloride, xylenes, toluene, tetrachloroethylene, trichloroethylene, pentachlorophenol, and aldrin were also found in the first flush samples. Concentrations of aggregate organics, nitrogen, phosphorus, and sediment were determined in both first flush and three-hour composite samples. Concentrations of pollutants in first flush samples were similar to those in corresponding composite samples.  相似文献   

16.
ABSTRACT: Storm water detention basins have historically been employed for quantity (i.e., flooding) control only. However, recently it has been suggested that these basins may also provide a practical means of storm water quality control. This paper presents the formulation of a mathematical modeling approach which may be used by professionals to simultaneously design detention basins for the dual purpose of storm water quantity and quality control. Model simulations demonstrate that for a given basin, pollutant removal increases as storm frequency increases. The importance of particle size distribution and settling velocity for net pollutant removal is illustrated, The design procedure is demonstrated, and pollutant loading diagrams for estimating pollutant removal as a function of storm size are developed.  相似文献   

17.
ABSTRACT: A first-order uncertainty technique is developed to quantify the relationship between field data collection and a modeling exercise involving both calibration and subsequent verification. A simple statistic (LTOTAL) is used to quantify the total likelihood (probability) of successfully calibrating and verifying the model. Results from the first-order technique are compared with those from a traditional Monte Carlo simulation approach using a simple Streeter-Phelps dissolved oxygen model. The largest single difference is caused by the filtering or removal of unrealistic outcomes within the Monte Carlo framework. The amount of bias inherent in the first-order approach is also a function of the magnitude of input variability and sampling location. The minimum bias of the first-order technique is approximately 20 percent for a case involving relatively large uncertainties. However the bias is well behaved (consistent) so as to allow for correct decision making regarding the relative efficacy of various sampling strategies. The utility of the first-order technique is demonstrated by linking data collection costs with modeling performance. For a simple and inexpensive project, a wise and informed selection resulted in an LTOTAL value of 86 percent, while an uninformed selection could result in an LTOTAL value of only 55 percent.  相似文献   

18.
ABSTRACT: In developing water quality models for lakes and reservoirs, the assumptions of one-dimensionality (i.e., water quality changes are significant only in one dimension – usually depth), as well as two-dimensionality (considering the length and depth of the water body), have been utilized to predict water quality. In both caws, the assumption of lateral homogeneity is made. A field study was undertaken to determine the change of water quality in the lateral dimension. The main study reservoir was Center Hill Lake in Middle Tennessee. Data were also obtained for Cherokee Lake in East Tennessee. Several water quality parameters (temperature, dissolved oxygen, pH, conductivity, and oxidation reduction potential) were analyzed over the length, breadth, and depth of these reservoirs from pre-stratification through post-stratification. The statistical and theoretical three-dimensional analysis showed the expected variation for each water quality parameter in each direction. The influence of the lateral dimension on water quality management and modeling was found to be negligible.  相似文献   

19.
ABSTRACT The literature on decision models in economics of regional water quality management is reviewed and classified.  相似文献   

20.
Water quality must be considered in the development and planning aspects of water resource management. To accomplish this, the decision-maker needs to have at his disposal a systematized procedure for simulating water quality changes in both time and space. The simulation model should be capable of representing changes in several parameters of water quality as they are influenced by natural and human factors impinging on the hydrologic system. The objective of this work is two-fold. The first goal is to demonstrate the feasibility of developing and utilizing a water quality simulation model in conjunction with a hydrologic simulation model. The model represents water quality changes in both time and space in response to changing atmospheric and hydrologic conditions and time-varying waste discharges at various points in the system. This model has been developed from and verified with actual field data from a prototype system selected for this purpose. The second aim is to set forth procedural guidelines to assist in the development of water quality simulation models as tools for use in the quality-quantity management of a hydrologic unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号