首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ chemical oxidation is a technology that has been applied to speed up remediation of a contaminant source zone by inducing increased mass transfer from DNAPL sources into the aqueous phase for subsequent destruction. The DNAPL source zone can consist of one or more individual sources that may be present as an interconnected pool of high saturation, as a region of disconnected ganglia at residual saturation, or as combinations of these two morphologies. Potassium permanganate (KMnO(4)) is a commonly employed oxidant that has been shown to rapidly destroy DNAPL compounds like PCE and TCE following second-order kinetics in an aqueous system. During the oxidation of a target DNAPL compound, or naturally occurring reduced species in the subsurface, manganese oxide (MnO(2)) solids are produced. Research has shown that these manganese oxide solids may result in permeability reductions in the porous media thus reducing the ability for oxidant to be transported to individual DNAPL sources. It can also occur at the DNAPL-water interface, decreasing contact of the oxidant with the DNAPL. Additionally, MnO(2) formation at the DNAPL-water interface, and/or flow-bypassing as a result of permeability reductions around the source, may alter the mass transfer from the DNAPL into the aqueous phase, potentially diminishing the magnitude of any DNAPL mass depletion rate increase induced by oxidation. An experiment was performed in a two-dimensional (2D) sand-filled tank that included several discrete DNAPL source zones. Spatial and temporal monitoring of aqueous PCE, chloride, and permanganate concentrations was used to relate changes in mass depletion of, and mass flux, from DNAPL residual and pool source zones to chemical oxidation performance and MnO(2) formation. During the experiment, permeability changes were monitored throughout the 2D tank and these were related to MnO(2) deposition as measured through post-oxidation soil coring. Under the conditions of this experiment, MnO(2) formation was found to reduce permeability in and around DNAPL source zones resulting in changes to the overall flow pattern, with the effects depending on source zone configuration. A pool with little or no residual around it, in a relatively homogeneous flow field, appeared to benefit from resulting MnO(2) pore-blocking that substantially reduced mass transfer from the pool even though there was relatively little PCE mass removed from the pool. In contrast, a pool with residual around it (in a more typical heterogeneous flow field) appeared to undergo increased mass transfer as MnO(2) reduced permeability, altering the water flow and increasing the mixing at the DNAPL-water interface. Further, the magnitude of increased PCE mass depletion during oxidation appeared to depend on the PCE source configuration (pool versus ganglia) and decreased as MnO(2) was formed and deposited at the DNAPL-water interface. Overall, the oxidation of PCE mass appeared to be rate-limited by the mass transfer from the DNAPL to aqueous phase.  相似文献   

2.
For sites contaminated with chloroethene non-aqueous-phase liquids, designing a remediation system that couples in situ chemical oxidation (ISCO) with potassium permanganate (KMnO4) and microbial dechlorination may be complicated because of the potentially adverse effects of ISCO on anaerobic bioremediation processes. Therefore, one-dimensional column studies were conducted to understand the effect of permanganate oxidation on tetrachloroethene (PCE) dechlorination by the anaerobic mixed culture KB-1. Following the confirmation of PCE dechlorination, KMnO4 was applied to all columns at a range of concentrations and application velocities to simulate varied distances from oxidant injection. Immediately following oxidation, reductive dechlorination was inhibited; however, after passing several pore volumes of sterile growth medium through the columns after oxidation, a rebound of PCE dechlorination activity was observed in every inoculated column without the need to reinoculate. The volume of medium required for a rebound of dechlorination activity differed from 1.1 to 8.1 pore volumes (at a groundwater velocity of 4 cm/d), depending on the specific condition of oxidant application.  相似文献   

3.
In situ chemical oxidation (ISCO) employing permanganate is an emerging technology that has been successful at enhancing mass removal from DNAPL source zones in unconsolidated media at the pilot-scale. The focus of this study was to evaluate the applicability of flushing a permanganate solution across two single vertical fractures in a laboratory environment to remove free phase DNAPL. The fracture experiments were designed to represent a portion of a larger fractured aquifer system impacted by a near-surface DNAPL spill over a shallow fractured rock aquifer. Each fracture was characterized by hydraulic and tracer tests, and the aperture field for one of the fractures was mapped using a co-ordinate measurement machine. Following DNAPL emplacement, a series of water and permanganate flushes were performed. To support observations from the fracture experiments, a set of batch experiments was conducted. The data from both fracture experiments showed that the post-oxidation effluent concentration was not impacted by the oxidant flush; however, changes in the aperture distribution, flow field, and flow rate were observed. These changes resulted in a significant decrease to the mass loading from the fractures, and were attributed to the build-up of oxidation by-products (manganese oxides and carbon dioxide) within the fracture which was corroborated by the batch experiment data and visual examination of the walls of one fracture. These results provide insight into the potential impact that a permanganate solution and oxidation by-products can have on the aperture distribution within a fracture and on DNAPL mass transfer rates. A permanganate flush or injection completed within a fractured rock aquifer may lead to the development of an insoluble product adjacent to the DNAPL which results in the reduction or complete elimination of advective regions near the DNAPL and reduces mass transfer rates. This outcome would have significant implications on the plume generating potential of the remaining DNAPL.  相似文献   

4.
In situ chemical oxidation (ISCO) using permanganate (MnO(4)(-)) can be a very effective technique for remediation of soil and groundwater contaminated with chlorinated solvents. However, many ISCO projects are less effective than desired because of poor delivery of the chemical reagents to the treatment zone. In this work, the numerical model RT3D was modified and applied to evaluate the effect of aquifer characteristics and injection system design on contact and treatment efficiency. MnO(4)(-) consumption was simulated assuming the natural oxidant demand (NOD) is composed of a fraction that reacts instantaneously and a fraction that slowly reacts following a 2nd order relationship where NOD consumption rate increases with increasing MnO(4)(-) concentration. MnO(4)(-) consumption by the contaminant was simulated as an instantaneous reaction. Simulation results indicate that the mass of permanganate and volume of water injected has the greatest impact on aquifer contact efficiency and contaminant treatment efficiency. Several small injection events are not expected to increase contact efficiency compared to a single large injection event, and can increase the amount of un-reacted MnO(4)(-) released down-gradient. High groundwater flow velocities can increase the fraction of aquifer contacted. Initial contaminant concentration and contaminant retardation factor have only a minor impact on volume contact efficiency. Aquifer heterogeneity can have both positive and negative impacts on remediation system performance, depending on the injection system design.  相似文献   

5.
A series of laboratory scale batch slurry experiments were conducted in order to establish a data set for oxidant demand by sandy and clayey subsurface materials as well as to identify the reaction kinetic rates of permanganate (MnO(4)(-)) consumption and PCE oxidation as a function of the MnO(4)(-) concentration. The laboratory experiments were carried out with 31 sandy and clayey subsurface sediments from 12 Danish sites. The results show that the consumption of MnO(4)(-) by reaction with the sediment, termed the natural oxidant demand (NOD), is the primary reaction with regards to quantification of MnO(4)(-) consumption. Dissolved PCE in concentrations up to 100 mg/l in the sediments investigated is not a significant factor in the total MnO(4)(-) consumption. Consumption of MnO(4)(-) increases with an increasing initial MnO(4)(-) concentration. The sediment type is also important as NOD is (generally) higher in clayey than in sandy sediments for a given MnO(4)(-) concentration. For the different sediment types the typical NOD values are 0.5-2 g MnO(4)(-)/kg dry weight (dw) for glacial meltwater sand, 1-8 g MnO(4)(-)/kg dw for sandy till and 5-20 g MnO(4)(-)/kg dw for clayey till. The long term consumption of MnO(4)(-) and oxidation of PCE can not be described with a single rate constant, as the total MnO(4)(-) reduction is comprised of several different reactions with individual rates. During the initial hours of reaction, first order kinetics can be applied, where the short term first order rate constants for consumption of MnO(4)(-) and oxidation of PCE are 0.05-0.5 h(-1) and 0.5-4.5 h(-1), respectively. The sediment does not act as an instantaneous sink for MnO(4)(-). The consumption of MnO(4)(-) by reaction with the reactive species in the sediment is the result of several parallel reactions, during which the reaction between the contaminant and MnO(4)(-) also takes place. Hence, application of low MnO(4)(-) concentrations can cause partly oxidation of PCE, as the oxidant demand of the sediment does not need to be met fully before PCE is oxidised.  相似文献   

6.
A laboratory study was conducted to examine cosolvent-enhanced in-situ chemical oxidation (ISCO) of perchloroethylene (PCE) using potassium permanganate (KMnO4). The conceptual basis for this new technique is to enhance permanganate oxidation of dense non-aqueous phase liquids (DNAPLs) with the addition of a cosolvent, thereby increasing DNAPL solubility while avoiding mobilization. Among 17 cosolvent candidates screened, tertiary butyl alcohol (TBA) and acetone were the most stable in the presence of KMnO4, both of which increased PCE aqueous solubility significantly, and therefore are suitable to be used as cosolvent in this study. Batch experiments indicated that the second-order rate constant for PCE oxidation by potassium permanganate was 0.043+/-0.002 M(-1) s(-1) in the purely aqueous (no cosolvent) solution. In the presence of 20% cosolvent (volume fraction=fc=0.2), the rate constant decreased to 0.036+/-0.003 M(-1) s(-1) with TBA and to 0.031+/-0.002 M(-1) s(-1) with acetone. However, in the presence of free-phase PCE, chloride ion concentration from PCE oxidation in acetone/water solutions (fc=0.2) was about twice that in aqueous solutions, indicating that the increase in PCE solubility more than compensated for the decrease in reaction rate constant, such that the oxidation efficiency of PCE was increased with cosolvent. A complete chlorine mass balance was observed in the aqueous system, whereas approximately 70% was obtained in TBA/water or acetone/water (fc=0.2). In soil columns containing residual DNAPL and subjected to isocratic flushing with step-wise increases in f(c) cosolvent, TBA at fc=0.2 resulted in PCE mobilization, whereas acetone at fc相似文献   

7.
Kinetics of natural oxidant demand by permanganate in aquifer solids   总被引:1,自引:0,他引:1  
During in situ chemical oxidation with permanganate, natural organic matter and other reduced species in the subsurface compete with the target compounds for the available oxidant and can exert a significant natural oxidant demand. This competition between target and nontarget compounds can have a significant impact on the permeation, dispersal, and persistence of permanganate in the subsurface. The kinetics of natural oxidant demand by permanganate was investigated using a composite sample made up of aquifer material collected from three different sites. The study found that although the depletion of organic carbon increased with increased permanganate dosage and increased reaction period, the mass ratio of MnO(4)(-):OC (wt/wt) was relatively constant over time (11.4+/-0.9). The reaction order and rate with respect to permanganate were found to decrease with time suggesting a continuum of reactions with the slower reactions becoming more controlling with time. However, the data also suggests that this continuum of reactions can be simplified into short- and long-term kinetic expressions representing fast and slow reactions. An independent first-order kinetic model with separate fast and slow reaction rate constants was used to successfully describe the complete kinetic expression of natural oxidant demand. The kinetic parameters used in the model are easily determined and can be used to better understand the complex kinetics of natural oxidant demand.  相似文献   

8.
Lee ES  Schwartz FW 《Chemosphere》2007,66(11):2058-2066
In situ chemical oxidation (ISCO) using potassium permanganate (KMnO4) has been widely used as a practical approach for remediation of groundwater contaminated by chlorinated solvents like trichloroethylene. The most common applications are active flushing schemes, which target the destruction of some contaminant source by injecting concentrated permanganate (MnO4(-)) solution into the subsurface over a short period of time. Despite many promising results, KMnO4 flushing is often frustrated by inefficiency associated with pore plugging by MnO2 and bypassing. Opportunities exist for the development of new ISCO systems based on KMnO4. The new scheme described in this paper uses controlled-release KMnO4 (CRP) as an active component in the well-based reactive barrier system. This scheme operates to control spreading of a dissolved contaminant plume. Prototype CRP was manufactured by dispersing fine KMnO4 granules in liquid crystal polymer resin matrix. Scanning electron microscope data verified the formation of micro-scale (ID=20-200 microm) secondary capillary permeability through which MnO4(-) is released by a reaction-diffusion process. Column and numerical simulation data indicated that the CRP could deliver MnO4(-) in a controlled manner for several years without replenishment. A proof-of-concept flow-tank experiment and model simulations suggested that the CRP scheme could potentially be developed as a practical approach for in situ remediation of contaminated aquifers. This scheme may be suitable for remediation of sites where accessibility is limited or some low-concentration contaminant plume is extensive. Development of delivery systems that can facilitate lateral spreading and mixing of MnO4(-) with the contaminant plume is warranted.  相似文献   

9.
Hood ED  Thomson NR  Grossi D  Farquhar GJ 《Chemosphere》2000,40(12):1383-1388
Flushing soils contaminated with trichloroethylene (TCE) and perchloroethylene (PCE) with a permanganate (MnO4) solution has been shown to reduce the solvent content of the soil. Experiments were performed to quantify the rate at which KMnO4 oxidizes aqueous solutions of PCE over a range of concentrations. In a series of homogeneous reactors, aqueous phase PCE concentrations were monitored over time in nine experimental trials with excess oxidant concentrations ranging from 5 to 30 g/l. Analysis of the data was performed to quantify the oxidation reaction order with respect to PCE and KMnO4 and the reaction rate constant. The reaction between PCE and KMnO4 was determined to be first-order with respect to both PCE and KMnO4 with an overall specific reaction rate coefficient of 2.45±0.65 M−1 min−1.  相似文献   

10.
Lemaire J  Croze V  Maier J  Simonnot MO 《Chemosphere》2011,84(9):1181-1187
An industrial coating site in activity located on a chalky plateau, contaminated by BTEX (mainly xylenes, no benzene), is currently remediated by in situ chemical oxidation (ISCO). We present the bench scale study that was conducted to select the most appropriate oxidant. Ozone and catalyzed hydrogen peroxide (Fenton’s reaction) were discarded since they were incompatible with plant activity. Permanganate, activated percarbonate and activated persulfate were tested. Batch experiments were run with groundwater and groundwater-chalk slurries with these three oxidants. Total BTEX degradation in groundwater was reached with all the oxidants. The molar ratios [oxidant]:[Fe2+]:[BTEX] were 100:0:1 with permanganate, 100:100:1 with persulfate and 25:100:1 with percarbonate. Precipitation of either manganese dioxide or iron carbonate (siderite) occurred. The best results with chalk slurries were obtained with permanganate at the molar ratio 110:0:1 and activated persulfate at the molar ratio 110:110:1. To avoid precipitation, persulfate was also used without activation at the molar ratio 140:1. Natural Oxidant Demand measured with both oxidants was lower than 5% of initial oxidant contents. Activated percarbonate was not appropriate because of radical scavenging by carbonated media. Permanganate and persulfate were both effective at oxidant concentrations of ca 1 g kg−1 with permanganate and 1.8 g kg−1 with persulfate and adapted to site conditions. Activation of persulfate was not mandatory. This bench scale study proved that ISCO remediation of a chalky aquifer contaminated by mainly xylenes was possible with permanganate and activated or unactivated persulfate.  相似文献   

11.
The objective of the following research is to theoretically quantify the enhancement of interphase mass transfer of dissolved non-aqueous phase liquid (NAPL) compounds from the non-aqueous phase to the aqueous phase and the enhancement of dispersive mass transport from a NAPL zone due to destruction of dissolved NAPL compounds. For relatively slow reaction rates, such as for permanganate and perchloroethene (PCE), local-scale mass transfer enhancement is expected to be small. Dispersive mass transport with reaction from a horizontal NAPL zone can be quantified using equations derived for a mathematically equivalent falling film reactor system. In contrast to local-scale interphase mass transfer, dispersive mass transport from NAPL zones may be significantly increased by reaction. Enhancement factors due to destruction of the NAPL compound(s) are mainly dependent on NAPL solubility and oxidant concentration and to a lesser extent on reaction rate, stoichiometry, and transverse dispersion coefficients. Higher NAPL solubility and/or lower oxidant concentration reduces the maximum expected enhancement factor. Reaction enhancement factors for mass transport from NAPL zones are expected to be in the range of 5-50 for permanganate and chlorinated solvents. Theoretical results suggest that assuming instantaneous reaction rates may be appropriate for dispersive mass transport from NAPL zones.  相似文献   

12.
原位化学氧化法在土壤和地下水修复中的研究进展   总被引:1,自引:0,他引:1  
综述了原位化学氧化法修复污染土壤及地下水的最新进展 ,着重介绍了几种氧化剂 ,如二氧化氯、双氧水及Fenton试剂、高锰酸钾和臭氧在土壤修复中的应用、不足及改进 ,并对化学氧化修复技术的发展前景进行了展望  相似文献   

13.
In situ chemical oxidation (ISCO) schemes using MnO4- have been effective in destroying chlorinated organic solvents dissolved in ground water. Laboratory experiments and field pilot tests reveal that the precipitation of Mn oxide, one of the reaction products, causes a reduction of permeability, which can lead to flow bypassing and inefficiency of the scheme. Without a solution to this problem of plugging, it is difficult to remove DNAPL from the subsurface completely. In a companion paper, we showed with batch experiments that Mn oxide can be dissolved rapidly with certain organic acids. This study utilizes 2-D flow-tank experiments to examine the possibility of nearly complete DNAPL removal by ISCO with MnO4-, when organic acids are used to remove Mn oxide. The experiments were conducted in a small 2-D glass flow tank containing a lenticular silica-sand medium. Blue-dyed trichloroethylene (TCE) provided residual, the perched and pooled DNAPL. KMnO4 at 200 mg/l was flushed through the DNAPL horizontally. Once plugging reduced permeability and prevented further delivery of the oxidant, citric or oxalic acids were pumped into the flow tank to dissolve the Mn oxide precipitates. Organic ligands removed the Mn oxide precipitates relatively quickly, and permitted another cycle of MnO4- flooding. Cycles of MnO4-/acid flooding continued until all of the visible DNAPL was removed. The experiments were monitored with chemical analysis and visualization. A mass-balance calculation indicated that by the end of the experiments, all the DNAPL was removed. The results show also how heterogeneity adds complexity to initial redistribution of DNAPL, and to the efficiency of the chemical flooding.  相似文献   

14.
Lee ES  Woo NC  Schwartz FW  Lee BS  Lee KC  Woo MH  Kim JH  Kim HK 《Chemosphere》2008,71(5):902-910
Release and spreading of permanganate (MnO(4)(-)) in the well-based controlled-release potassium permanganate (KMnO(4)) barrier system (CRP system) was investigated by conducting column release tests, model simulations, soil oxidant demand (SOD) analyses, and pilot-scale flow-tank experiments. A large flow tank (L x W x D=8m x 4m x 3m) was constructed. Pilot-scale CRP pellets (OD x L=0.05 m x1.5m; n=110) were manufactured by mixing approximately 198 kg of KMnO(4) powders with paraffin wax and silica sands in cylindrical moulds. The CRP system (L x W x D=3m x 4m x 1.5m) comprising 110 delivery wells in three discrete barriers was constructed in the flow tank. Natural sands (organic carbon content=0.18%; SOD=3.7-11 g MnO(4)(-)kg(-1)) were used as porous media. Column release tests and model simulations indicated that the CRP system could continuously release MnO(4)(-) over several years, with slowly decreasing release rates of 2.5 kg d(-1) (day one), 109 g d(-1) (day 100), 58 g d(-1) (year one), 22 g d(-1) (year five), and 12 g d(-1) (year 10). Mean MnO(4)(-) concentrations within the CRP system ranged from 0.5 to 6 mg l(-1) during the 42 days of testing period. The continuously releasing MnO(4)(-) was gradually removed by SOD limiting the length of MnO(4)(-) zone in the porous media. These data suggested that the CRP system could create persistent and confined oxidation zone in the subsurface. Through development of advanced tools for describing agent transport and facilitating lateral agent spreading, the CRP system could provide new approach for long-term in situ treatment of contaminant plumes in groundwater.  相似文献   

15.
The stability of Mn oxides, and the potential for mobilization of associated trace metals, were assessed by simulating the onset of microbially-mediated reducing conditions in a continuous-flow column experiment. The column had previously been used for an in situ chemical oxidation (ISCO) experiment in which trichloroethylene was reacted with permanganate in the presence of aqueous trace metals, which produced Mn oxyhydroxides (MnO(x)) that sequestered the trace metals and coated the column sand. The column influent solution represented the incursion of ambient groundwater containing dissolved organic carbon (DOC) into an ISCO treatment zone. The influx of DOC-containing groundwater initiated a series of cation-exchange, surface-complexation and reductive-dissolution reactions that controlled the release of aqueous metals from the system. Peak concentrations in the effluent occurred in the order Na, Mo, Cr, Zn, K, Mn, Fe, Pb, Mg, Ni, Cu and Ca. Manganese release from the column was controlled by a combination of cation exchange, reductive dissolution and precipitation of rhodochrosite. The trend in Fe concentrations was similar to that of Mn, and also resulted from a combination of reductive dissolution and cation exchange. Cation exchange and/or surface-complexation were the primary mechanisms controlling Cu, Ni, Mo and Pb release to solution, while Zn and Cr concentrations did not display coherent trends. Although metal release from the treatment zone was evident in the data, concentrations of trace metals remained below 0.05 mg L(-1) with the exception of Mo which reached concentrations on the order of 1 mg L(-1). The establishment of anaerobic conditions in ISCO-treated aquifers may result in a prolonged flux of aqueous Mn(II), but with the exception of MoO(4)(2-), it is unlikely that trace metals sequestered with MnO(x) during ISCO will be released to the groundwater in elevated concentrations.  相似文献   

16.
In-situ oxidation of dense nonaqueous-phase liquids (DNAPLs) by strong oxidants such as potassium permanganate (KMnO4) has been proposed as a possible DNAPL remediation strategy. In this study, we investigated the effects of in-situ trichloroethene (TCE) oxidation by KMnO4 on porous medium hydraulic properties. In particular, we wanted to determine the overall effects of concurrent solid phase (MnO2) precipitation, gas (CO2) evolution and TCE dissolution resulting from the oxidation reaction on the porous medium's aqueous-phase relative permeability, krw. Three TCE removal experiments were conducted in a 95-cm long, 5.1-cm i.d. glass column, which was homogeneously packed with well-characterized 30/40-mesh silica sand. TCE was emplaced in the sand-pack in residual, entrapped form through a sequence of water/TCE imbibition and drainage steps. The column was then flushed under constant aqueous flux conditions for up to 104 h with either deionized water (reference experiment), deionized water containing 5 mM KMnO4 or deionized water containing 5 mM KMnO4 and 300 mM Na2HPO4. Aqueous-phase relative permeabilities were computed from measured flow rates and measurements of aqueous-phase pressure head, h obtained using pressure transducers connected to tensiometers distributed along the column length. A dual-energy gamma radiation system was used to monitor changes in fluid saturation that occurred during each experiment. In addition, column effluent samples were collected for chemical analyses. Dissolution of TCE during deionized water flushing led to an increase in krw by approximately 22% and a local reduction in h. On the other hand, vigorous CO2 gas production and precipitation of MnO2 was visually observed during flushing with deionized water that contained 5 mM KMnO4. As a consequence, krw declined by approximately 96% and h increased locally by more than 1000 cm H2O during the first 24 h of the experiment, causing sand-pack ruptures and pump failure. Conversely, less CO2 gas production and MnO2 precipitation was visually observed during flushing with deionized water that contained 5 mM KMnO4 and 300 mM Na2HPO4. Consequently, only small increases in h (< 15 cm H2O) were observed in this experiment due to a reduction in krw of approximately 53%. While we must attribute changes in h due to variations in krw to our specific experimental design (constant aqueous flux, one-dimensional flow experiments), these experiments nevertheless confirm that successful application of in situ chemical oxidation of TCE requires consideration of detrimental processes such as MnO2 precipitation and CO2 gas formation. In addition, our results indicate that utilization of a buffered oxidant solution may improve the effectiveness of in-situ oxidation of TCE by KMnO4 in otherwise weakly buffered porous media.  相似文献   

17.
The potential for trace-metal contamination of aquifers as a side effect of In Situ Chemical Oxidation (ISCO) of chlorinated solvent contamination by KMnO(4) is investigated with column experiments. The experiments investigate metal mobility during in situ chemical oxidation of TCE by KMnO(4) under conditions where pH, flow rate, KMnO(4), TCE, and trace-metal concentrations were controlled. During ISCO, the injection of MnO(4) creates oxidizing conditions, and acidity released by the reactions causes a tendency toward low pH in aquifers. In order to evaluate the role of pH buffering on metal mobility, duplicate columns were constructed, one packed with pure silica sand, and one with a mixture of silica sand and calcite. Aqueous solutions of TCE and KMnO(4) (with 1 mg/L Cu, Pb, Zn, Mo, Ni, and Cr(VI)) were allowed to mix at the inlet to the columns. After the completion of the experiments, samples of Mn oxide were removed from the columns and analyzed by analytical scanning and transmission electron microscopy. In order to relate the results of the laboratory experiments to field settings, the analyses of Mn-oxide samples from the lab experiments were compared to samples of Mn oxide collected from a field-scale chemical-oxidation experiment that were also analyzed by analytical electron microscopy as well as time-of-flight secondary-ion mass spectroscopy. The pH ranged from 2.40 in the silica sand column to 6.25 in the calcite-containing column. The data indicate that aqueous Mo, Pb, Cu and Ni concentrations are attenuated almost completely within the columns. In contrast, Zn concentrations are not significantly attenuated and Cr(VI) is transported conservatively. The results indicate that within the range 2.40 to 6.25, metal mobility is not affected by pH. Comparison of analyses of Mn-oxide from the lab and field demonstrate that a variety of metals are sequestered from solution by Mn oxide.  相似文献   

18.
The partitioning of non-aqueous phase liquid (NAPL) compounds to a discontinuous gas phase results in the repeated spontaneous expansion, snap-off, and vertical mobilization of the gas phase. This mechanism has the potential to significantly affect the mass transfer processes that control the dissolution of NAPL pools by increasing the vertical transport of NAPL mass and increasing the total mass transfer rate from the surface of the pool. The extent to which this mechanism affects mass transfer from a NAPL pool depends on the rate of expansion and the mass of NAPL compound in the gas phase. This study used well-controlled bench-scale experiments under no-flow conditions to quantify for the first time the expansion of a discontinuous gas phase in the presence of NAPL. Air bubbles placed in glass vials containing NAPL increased significantly in volume, from a radius of 1.0 mm to 2.0 mm over 215 days in the presence of tetrachloroethene (PCE), and from a radius of 1.2 mm to 2.3 mm over 22 days in the presence of trans-1,2-dichloroethene (tDCE). A one-dimensional mass transfer model, fit to the experimental data, showed that this expansion could result in a mass flux from the NAPL pool that was similar in magnitude to the mass flux expected for the dissolution of a NAPL pool in a two-fluid (NAPL and water) system. Conditions favouring the significant effect of a discontinuous gas phase on mass transfer were identified as groundwater velocities less than ~0.01 m/day, and a gas phase that covers greater than ~10% of the pool surface area and is located within ~0.01 m of the pool surface. Under these conditions the mass transfer via a discontinuous gas phase is expected to affect, for example, efforts to locate NAPL source zones using aqueous concentration data, and predict the lifetime and risk associated with NAPL source zones in a way that is not currently included in the common conceptual models used to assess NAPL-contaminated sites.  相似文献   

19.
高锰酸钾降解地下水中PCE的研究   总被引:2,自引:1,他引:1  
田璐  杨琦  尚海涛 《环境工程学报》2009,3(8):1355-1359
以氯代有机污染物中常见的PCE为目标污染物,以自制高锰酸钾溶液为氧化剂,采用批实验方法,探讨了高锰酸钾降解PCE的反应动力学、影响因素以及反应机理。反应结果表明,高锰酸钾降解PCE的反应符合一级动力学方程,反应活化能E为57.119 kJ/mol,在30℃条件下,反应速率常数为0.0076 min-1,半衰期为91.20 min。在pH在3~10,离子强度在0~0.1030 mol/L之间变化时,反应速率不受明显影响。  相似文献   

20.
The chemical oxidation of trichloroethene dense non-aqueous phase liquid by permanganate was studied in an aqueous system using micro-reaction/extraction vessels in a novel approach. Experiments were conducted at ambient temperature ( approximately 20 degrees C) under static and mixed conditions to evaluate the rate of TCE(DNAPL) dissolution as a function of permanganate concentration. Chemical oxidation by permanganate was shown to increase the rate of TCE(DNAPL) dissolution under static conditions and decrease the rate of dissolution under mixed conditions. The apparent inconsistency in results appears to result from the local deposition of a film at the DNAPL interface composed of manganese oxide solids as discovered through visual observation with the aid of a Goniometer. Data from interfacial deposition experiments suggest that the film formed rapidly and reached maturation within approximately 2 h with little or no growth occurring thereafter. A conceptual model of the reaction and mass transfer processes occurring at the DNAPL interface was proposed based on the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号