首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
文章以美国赛默飞世尔科技公司(Thermo Fisher Scientific,USA)的TEOM-1405-D双通道颗粒物在线监测仪测定的PM_(10)浓度数据,对比分析北京市大兴南海子森林公园植被区和亦庄非植被区的PM_(10)浓度时空变化特征。结果显示:PM_(10)质量浓度表现为植被区低于非植被区,二者均表现出大致相同的日变化趋势,呈典型的双峰曲线,峰值出现在上午9:00和夜间23:00;对比分析不同月份PM_(10)质量浓度可以看出,植被区与非植被区表现为同步增加或同步降低的趋势;该研究4次降雨中,第3次降雨削减率最大,植被区为82.30%,非植被区为64.50%;第4次降雨削减率最小,植被区为13.27%,非植被区为18.89%;大风在一定程度上会降低PM_(10)等颗粒物的质量浓度,风后植被区PM_(10)均值削减率为2.19%~35.59%,非植被区PM_(10)均值削减率为7.50%~58.56%;植被区与非植被区PM_(10)质量浓度均与温度成负相关。上述结果可为北京城市森林生态建设及环境保护提供合理的科学依据。  相似文献   

2.
基于2017年全年在某钢厂厂区4个特征点位进行的环境大气PM_(2.5)、PM_(10)和气象参数的在线监测数据,对一年中污染高发/非高发时段钢铁厂厂区内大气颗粒物的浓度水平、粒径分布、日均值变化趋势以及气象因素对浓度的影响进行了分析,并利用大气气团输送模拟及潜在污染源贡献(PSCF)分析探讨了厂区大气PM_(2.5)的外来输送和本地贡献情况。结果表明:2017年全年某钢厂厂区大气颗粒物以细颗粒物为主;4个站点大气PM_(2.5)日均值全年变化趋势一致,污染高发月份质量浓度均值高于非污染高发月份相应值;除2号站可能受到厂区生产活动排放的影响,PM_(2.5)浓度水平略高外,各站点相互间及与周边环境对照点的浓度保持在一致水平,亦未发现明显的污染物输出现象;冬季外来污染源输入对厂区大气PM_(2.5)浓度贡献较显著,其他季节应主要考虑本地排放影响。  相似文献   

3.
北京野鸭湖湿地观测站大气颗粒物变化特征   总被引:1,自引:0,他引:1  
利用北京延庆野鸭湖湿地生态气象观测站2013年PM_(2.5)和PM_(10)连续观测资料,统计分析野鸭湖地区大气颗粒物的变化特征及气象影响因素。研究结果表明:野鸭湖观测站PM_(2.5)和PM_(10)年平均浓度分别为45.7μg/m3和80.2μg/m~3,超标率分别为17.8%和11.4%,以《环境空气质量标准》二级标准统计。PM_(2.5)和PM_(10)均在1月达到峰值,7月出现最低值。各季PM_(2.5)/PM_(10)值在37.8%~69.9%之间,春季以PM_(10)污染为主,冬季以PM_(2.5)为主。各季节PM_(2.5)和PM_(10)日变化中夏季出峰最早,冬季最晚,冬春季PM_(2.5)浓度为双峰型,夏秋季为单峰型;PM_(10)的日变化仅春季与PM_(2.5)略有不同,晚上峰值强度远大于早上。野鸭湖地区颗粒物污染受本地源和外来源的共同影响,东北气流易造成颗粒物积累,而西南气流有利于颗粒物稀释扩散。典型污染过程显示,持续的东北风控制、风速2.0 m/s左右、平均相对湿度在80.0%左右利于颗粒物浓度的增加;而偏西气流和较高温度、较低湿度能共同起到缓解污染的作用。  相似文献   

4.
基于福州市区2015年2月—2016年1月间的大气PM_(2.5)监测数据,综合运用HYSPLIT后向轨迹模式、潜在源贡献因子法(WPSCF)与浓度权重轨迹分析(WCWT)等方法,探讨了福州市区冬、春季PM_(2.5)污染特征和典型污染过程成因,总结了气象因子和污染来源的季节性差异.研究期间,冬、春季是福州市区PM_(2.5)污染的主要季节,福州市区不同类型站点的PM_(2.5)浓度在冬、春季污染发生时均呈现出整体升高的特点,但浓度日变化却存在季节性差异,冬季无显著日变化,春季则表现为单峰单谷特征.福州市区春季主要受锋前暖区和高压后部等天气系统影响,大气扩散条件差,PM_(2.5)极易在不利的气象条件下累积,福建沿海地区是其PM_(2.5)污染的主要潜在源区;冬季污染易受高压天气系统作用,盛行偏北风,长江三角洲地区的污染物输入会对福州市区空气质量产生较大影响,长江三角洲、浙江东南沿海、福建北部是其PM_(2.5)污染的主要潜在源区.  相似文献   

5.
南京市冬春PM_(2.5)和PM_(10)污染特征及影响因素分析   总被引:2,自引:2,他引:0  
黄军  郭胜利  王希 《环境工程》2015,33(12):69-74
南京2013年冬季至2014年春季多次出现灰霾污染天气过程,防治颗粒物污染刻不容缓,其中细颗粒物(PM_(10))和超细颗粒物(PM_(2.5))所占比例较大。利用南京市环保局空气质量发布平台污染物监测数据和中国天气网站气象要素数据,对冬春季PM_(2.5)和PM_(10)质量浓度的变化特征以及它们与气象条件的关系进行分析。结果表明:南京冬季PM_(2.5)、PM10平均浓度分别为0.0982,0.1536 mg/m3,春季平均浓度分别为0.0673,0.1207 mg/m3。市区和郊区污染程度由高到低依次为:市区>江宁>六合>溧水。南京空气中颗粒物小时平均浓度日变化呈"双峰双谷型"特征。颗粒物与相对湿度、降雨量和风力呈一定的负相关性,与温度呈一定的正相关性,它们共同影响颗粒物质量浓度水平和大气污染状况。  相似文献   

6.
利用郑州城区9个国控监测点位PM_(10)、PM_(2.5)的日监测数据,研究2013~2016年间郑州城区大气颗粒物质量浓度变化特征及其对气象因素的响应。结果表明,2013~2016年间郑州城区环境空气污染总体状况改善趋势较为显著,重度及以上的污染天数占全年有效天数的比例逐年降低,PM_(10)、PM_(2.5)浓度逐年下降;PM_(10)和PM_(2.5)浓度月均值变化基本一致,浓度变化均呈"U"型分布。PM_(10)和PM_(2.5)质量浓度变化具有明显的季节性特征,冬季其质量浓度最高,春季和秋季次之,夏季最低。选取气温、气压、风速、相对湿度和降水量等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM_(10)、PM_(2.5)浓度的影响。相关性分析结果表明,与PM_(10)、PM_(2.5)浓度显著相关的气象因素存在季节性差异,风速、相对湿度和降雨量是影响郑州城区大气颗粒物质量浓度的主要气象因子。  相似文献   

7.
上海地区降雨清除PM2.5的观测研究   总被引:1,自引:0,他引:1  
分析2012—2016年上海徐家汇站的雨量和颗粒物(PM_1、PM_(2.5)、PM_(10))观测数据发现,降雨对PM_(2.5)的湿清除作用明显,降雨日的PM_(2.5)质量浓度较非降雨日平均降低约30%,在污染季节降低更加显著约50%.降雨时PM_1在PM_(2.5)中的占比明显下降,PM_1质量浓度下降幅度占PM_(2.5)下降幅度的84%,表明降雨对PM_1的有效清除是PM_(2.5)质量浓度下降的主要原因.降雨过程结束后PM_(2.5)质量浓度是否下降和降雨前PM_(2.5)的初始质量浓度关系密切,当初始浓度在冬季大于70μg·m~(-3)、在其他季节大于45μg·m~(-3)时,80%以上的降雨过程结束后PM_(2.5)质量浓度较降雨前下降,因此可作为研判降雨过程对PM_(2.5)湿清除影响的预报因子.  相似文献   

8.
为准确掌握垫江县城区大气环境中细颗粒的污染状况,选择2016年9月1日—2017年2月28日大气自动观测站的数据研究分析,结果表明:垫江县城区大气环境中PM_(10)和PM_(2.5)的平均质量浓度分别为79mg/m~3和68mg/m~3,PM_(10)的月平均质量浓度均大于PM_(2.5),PM_(2.5)占PM_(10)的比例在84.6%~90.0%。多元分析结果可以看出,大气环境中的PM_(10)和PM_(2.5)具有相类似来源,气象条件对垫江县城区大气颗粒物污染影响较大。HYSPLIT轨迹模型分析表明,秋冬季节大气重污染时段,垫江县城区大气环境中颗粒物来源受到西南和西北气团影响较大。  相似文献   

9.
通过对阜康市2015年1个区控点的PM_(2.5)和PM_(10)的连续自动监测数据分析得出:2015年阜康市大气颗粒物中PM_(2.5)、PM_(10)浓度日均值和小时值的最大值均出现在4月,日均值均超过了环境空气质量标准的二级标准限值;月均值最大值均出现在12月;PM_(2.5)的年均值超过了环境空气质量标准的二级标准限值;PM_(2.5)和PM_(10)冬季的日变化浓度高于其他三季,夏季最低。超标天数高值出现在1、2、11、12月,PM_(2.5)的污染程度比PM10严重;PM_(2.5)和PM_(10)的比值1、11、12月较大。  相似文献   

10.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号