首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Current Trends in Plant and Animal Population Monitoring   总被引:3,自引:0,他引:3  
Abstract:  Animal and plant population monitoring programs are critical for identifying species at risk, evaluating the effects of management or harvest, and tracking invasive and pest species. Nevertheless, monitoring activities are highly decentralized, which makes it difficult for researchers or conservation planners to get a good general picture of what real-world monitoring programs actually entail. We used a Web-based survey to collect information on population monitoring programs. The survey focused on basic questions about each program, including motivations for monitoring, types of data being collected, spatiotemporal design of the program, and reasons for choosing that design. We received responses from 311 people involved in monitoring of various species and used these responses to summarize ongoing monitoring efforts. We also used responses to determine whether monitoring strategies have changed over time and whether they differed among monitoring agencies. Most commonly, monitoring entailed collection of count data at multiple sites with the primary goal of detecting trends. But we also found that goals and strategies for monitoring appeared to be diversifying, that area-occupied and presence–absence approaches appeared to be gaining in popularity, and that several other promising approaches (monitoring to reduce parameter uncertainty, risk-based monitoring, and directly linking monitoring data to management decisions) have yet to become widely established. We suggest that improved communication between researchers studying monitoring designs and those who are charged with putting these designs into practice could further improve monitoring programs and better match sampling designs to the objectives of monitoring programs.  相似文献   

2.
This paper reviews design-based estimators for two- and three-stage sampling designs to estimate the mean of finite populations. This theory is then extended to spatial populations with continuous, infinite populations of sampling units at the latter stages. We then assume that the spatial pattern is the result of a spatial stochastic process, so the sampling variance of the estimators can be predicted from the variogram. A realistic cost function is then developed, based on several factors including laboratory analysis, time of fieldwork, and numbers of samples. Simulated annealing is used to find designs with minimum sampling variance for a fixed budget. The theory is illustrated with a real-world problem dealing with the volume of contaminated bed sediments in a network of watercourses. Primary sampling units are watercourses, secondary units are transects perpendicular to the axis of the watercourse, and tertiary units are points. Optimal designs had one point per transect, from one to three transects per watercourse, and the number of watercourses varied depending on the budget. However, if laboratory costs are reduced by grouping all samples within a watercourse into one composite sample, it appeared to be efficient to sample more transects within a watercourse.  相似文献   

3.
Maps are useful tools for understanding, managing, and protecting the marine environment, yet few useful and statistically defensible maps of environmental quality and aquatic resources have been developed in near-coastal regions. Current environmental management efforts, such as ocean monitoring by sewage dischargers, routinely sample areas of potential impact using sparse sampling grids. Heterogeneous oceanic conditions often make extrapolation from these grids to non-sampled locations questionable. Although rarely applied in coastal monitoring, kriging offers a more rigorous statistical approach to mapping and allows confidence intervals to be calculated for predictions. Its usefulness relies on accurate models of the spatial variability through estimating the semivariogram. Many optimal designs for estimating the semivariogram have been proposed, but these designs are often difficult to implement in practice. In this paper, we present simple design strategies for augmenting existing monitoring designs with the goal of estimating the semivariogram. In particular, we investigate a multi-lag cluster design strategy, where clusters of sites, spaced at various lag distances, are placed around fixed stations on an existing sampling grid. We find that these multi-lag cluster designs provide improved accuracy in estimating the parameters of the semivariogram. Based on simulation study findings, we apply a multi-lag cluster enhancement to the monitoring grid for the City of San Diego’s Point Loma Wastewater Treatment Plant as part of a special study to map chemical contaminants in sediments around its sewage outfall.  相似文献   

4.
Consider a survey of a plant or animal species in which abundance or presence/absence will be recorded. Further assume that the presence of the plant or animal is rare and tends to cluster. A sampling design will be implemented to determine which units to sample within the study region. Adaptive cluster sampling designs Thompson (1990) are sampling designs that are implemented by first selecting a sample of units according to some conventional probability sampling design. Then, whenever a specified criterion is satisfied upon measuring the variable of interest, additional units are adaptively sampled in neighborhoods of those units satisfying the criterion. The success of these adaptive designs depends on the probabilities of finding the rare clustered events, called networks. This research uses combinatorial generating functions to calculate network inclusion probabilities associated with a simple Latin square sample. It will be shown that, in general, adaptive simple Latin square sampling when compared to adaptive simple random sampling will (i) yield higher network inclusion probabilities and (ii) provide Horvitz-Thompson estimators with smaller variability.  相似文献   

5.
Classical sampling methods can be used to estimate the mean of a finite or infinite population. Block kriging also estimates the mean, but of an infinite population in a continuous spatial domain. In this paper, I consider a finite population version of block kriging (FPBK) for plot-based sampling. The data are assumed to come from a spatial stochastic process. Minimizing mean-squared-prediction errors yields best linear unbiased predictions that are a finite population version of block kriging. FPBK has versions comparable to simple random sampling and stratified sampling, and includes the general linear model. This method has been tested for several years for moose surveys in Alaska, and an example is given where results are compared to stratified random sampling. In general, assuming a spatial model gives three main advantages over classical sampling: (1) FPBK is usually more precise than simple or stratified random sampling, (2) FPBK allows small area estimation, and (3) FPBK allows nonrandom sampling designs.  相似文献   

6.
Monitoring stream networks through time provides important ecological information. The sampling design problem is to choose locations where measurements are taken so as to maximise information gathered about physicochemical and biological variables on the stream network. This paper uses a pseudo-Bayesian approach, averaging a utility function over a prior distribution, in finding a design which maximizes the average utility. We use models for correlations of observations on the stream network that are based on stream network distances and described by moving average error models. Utility functions used reflect the needs of the experimenter, such as prediction of location values or estimation of parameters. We propose an algorithmic approach to design with the mean utility of a design estimated using Monte Carlo techniques and an exchange algorithm to search for optimal sampling designs. In particular we focus on the problem of finding an optimal design from a set of fixed designs and finding an optimal subset of a given set of sampling locations. As there are many different variables to measure, such as chemical, physical and biological measurements at each location, designs are derived from models based on different types of response variables: continuous, counts and proportions. We apply the methodology to a synthetic example and the Lake Eacham stream network on the Atherton Tablelands in Queensland, Australia. We show that the optimal designs depend very much on the choice of utility function, varying from space filling to clustered designs and mixtures of these, but given the utility function, designs are relatively robust to the type of response variable.  相似文献   

7.
Sampling designs considered for a national scale environmental monitoring programme are compared. Specifically, design strategies designed to monitor one aspect of this environmental programme, agro-ecosystem health, are assessed. Two types of panel survey designs are evaluated within the framework of two-stage sampling. Comparisons of these designs are discussed with regard to precision, cost, and other issues that need to be considered in planning long-term surveys. To compare precision, the underlying variance of a simple estimator of mean difference is derived for each of the two designs. A variance and cost model accounting for the different rotational sampling schemes across designs are developed. Optimum stage allocation for each design are assessed with the variance-cost models. The best choice of design varied with the conditions underlying the variance model and the degree of other sources of survey error expected in the programme.  相似文献   

8.
Adaptive cluster sampling (ACS) has the potential of being superior for sampling rare and geographically clustered populations. However, setting up an efficient ACS design is challenging. In this study, two adaptive plot designs are proposed as alternatives: one for fixed-area plot sampling and the other for relascope sampling (also known as variable radius plot sampling). Neither includes a neighborhood search which makes them much easier to execute. They do, however, include a conditional plot expansion: at a sample point where a predefined condition is satisfied, sampling is extended to a predefined larger cluster-plot or a larger relascope plot. Design-unbiased estimators of population total and its variance are derived for each proposed design, and they are applied to ten artificial and one real tree position maps to estimate density (number of trees per ha) and basal area (the cross-sectional area of a tree stem at breast height) per hectare. The performances—in terms of relative standard error (SE%)—of the proposed designs and their non-adaptive alternatives are compared. The adaptive plot designs were superior for the clustered populations in all cases of equal sample sizes and in some cases of equal area of sample plots. However, the improvement depends on: (1) the plot size factor; (2) the critical value (the minimum number of trees triggering an expansion); (3) the subplot distance for the adapted cluster-plots, and (4) the spatial arrangement of the sampled population. For some spatial arrangements, the improvement is relatively small. The adaptive designs may be particularly attractive for sampling in rare and compactly clustered populations with critical value of 1, subplot distance equal to the diameter of initial circular plots, or plot size factor of 2.5 for an initial basal area factor of 2.  相似文献   

9.
This paper presents an overview of space-time statistical procedures to analyse agricultural and environmental related phenomena. It starts with an application on root-rot development in cotton. Dependence modelling in space and time is done with the space-time variogram. Various kriging interpolators are presented for making predictions in space and time. Simulated annealing is used to design an optimal monitoring network for estimation of space-time variograms. In the application no clear indication was found for anisotropy, although strong evidence exists that the disease not only proceeds within rows but also jumps between rows. The optimal sampling scheme showed a spatial clustering of observations at the first and the last monitoring day and less observations at intermediate times.  相似文献   

10.
O. Defeo  M. Rueda 《Marine Biology》2002,140(6):1215-1225
We discuss methodological aspects directed to quantify the across-shore population structure and abundance of sandy beach macroinfauna. The reliability of estimates derived from design-based (stratified random sampling) and model-based (geostatistics, kriging) approaches is discussed. Our analysis also addresses potential biases arising from environmentally driven designs that consider a priori fixed strata for sampling macroinfauna, as opposed to species-driven sampling designs, in which the entire range of across-shore distribution is covered. Model-based approaches showed, spatially, highly autocorrelated and persistent structures in two intertidal populations of the Uruguayan coast: the isopod Excirolana armata and the yellow clam Mesodesma mactroides. Both populations presented zonation patterns that ranged from the base of the dunes to upper levels of the subtidal. The Gaussian model consistently explained the spatial distribution of species and population components (clam recruits and adults), with a minor contribution (Е%) of unresolved, small-scale variability. The consistent structure of spatial dependence in annual data strongly suggests an across-shore-structured process covering close to 35 m. Kriging predictions through cross-validation corroborated the appropriateness of the models fitted through variographic analysis, and the derived abundance estimates were very similar (maximum difference=7%) to those obtained from linear interpolation. Monthly analysis of E. armata data showed marked variations in its zonation and an unstable spatial structure according to the Gaussian model. The clear spatial structure resulting from species-driven sampling was not observed when data was truncated to simulate an environmentally driven sampling design. In this case, the linear semivariogram indicated a spatial gradient, suggesting that sampling was not performed at the appropriate spatial scale. Further, the cross-validation procedure was not significant, and both density and total abundance were underestimated. We conclude that: (1) geostatistics provides useful additional information about population structure and aids in direct abundance estimation; thus we suggest it as a powerful tool for further applications in the study of sandy beach macroinfauna; and that (2) environmentally driven sampling strategies fail to provide conclusive results about population structure and abundance, and should be avoided in studies of sandy beach populations. This is especially true for microtidal beaches, where unpredictable swash strength precludes a priori stratification through environmental reference points. The need to use adaptive sampling designs and avoid snapshot sampling is also stressed. Methodological implications for the detection of macroecological patterns in sandy beach macroinfauna are also discussed.  相似文献   

11.
Using the example of the transboundary Biosphere Reserve Rhone, experiments were performed and expounded upon with regard to the concept of ‘integrated monitoring’. The paper describes the components of a step-by-step harmonisation of data sampling and analysis procedures. Special emphasis is given to topics dealing with suitable methods for a sound selection of areas and plots to be monitored, as well as on rules for the spatial integration and generalisation of sampling results. As tools for this purpose the concept of ‘integrated monitoring’ uses the federal ‘Classification System of Ecoregions’ (Standortökologische Raumgliederung) and geostatistical methods for the spatial integration of existing monitoring programmes and sampling grids. Further, the paper outlines how to judge the development of water catchment areas using existing data from hydrological analyses and by means of an ecosystem-oriented water balance model.  相似文献   

12.
Bayesian entropy for spatial sampling design of environmental data   总被引:1,自引:0,他引:1  
We develop a spatial statistical methodology to design national air pollution monitoring networks with good predictive capabilities while minimizing the cost of monitoring. The underlying complexity of atmospheric processes and the urgent need to give credible assessments of environmental risk create problems requiring new statistical methodologies to meet these challenges. In this work, we present a new method of ranking various subnetworks taking both the environmental cost and the statistical information into account. A Bayesian algorithm is introduced to obtain an optimal subnetwork using an entropy framework. The final network and accuracy of the spatial predictions is heavily dependent on the underlying model of spatial correlation. Usually the simplifying assumption of stationarity, in the sense that the spatial dependency structure does not change location, is made for spatial prediction. However, it is not uncommon to find spatial data that show strong signs of nonstationary behavior. We build upon an existing approach that creates a nonstationary covariance by a mixture of a family of stationary processes, and we propose a Bayesian method of estimating the associated parameters using the technique of Reversible Jump Markov Chain Monte Carlo. We apply these methods for spatial prediction and network design to ambient ozone data from a monitoring network in the eastern US.  相似文献   

13.
We consider the spatial sampling design problem for a random field X. This random field is in general assumed not to be directly observable, but sample information from a related variable Y is available. Our purpose in this paper is to present a state-space model approach to network design based on Shannon's definition of entropy, and describe its main points with regard to some of the most common practical problems in spatial sampling design. For applications, an adaptation of Ko et al.'s (1995) algorithm for maximum entropy sampling in this context is provided. We illustrate the methodology using piezometric data from the Velez aquifer (Malaga, Spain). © Rapid Science 1998  相似文献   

14.
A new spatially balanced sampling design for environmental surveys is introduced, called Halton iterative partitioning (HIP). The design draws sample locations that are well spread over the study area. Spatially balanced designs are known to be efficient when surveying natural resources because nearby locations tend to be similar. The HIP design uses structural properties of the Halton sequence to partition a resource into nested boxes. Sample locations are then drawn from specific boxes in the partition to ensure spatial diversity. The method is conceptually simple and computationally efficient, draws spatially balanced samples in two or more dimensions and uses standard design-based estimators. Furthermore, HIP samples have an implicit ordering that can be used to define spatially balanced over-samples. This feature is particularly useful when sampling natural resources because we can dynamically add spatially balanced units from the over-sample to the sample as non-target or inaccessible units are discovered. We use several populations to show that HIP sampling draws spatially balanced samples and gives precise estimates of population totals.  相似文献   

15.
Ranked-set sampling from a finite population is considered in this paper. Three sampling protocols are described, and procedures for constructing nonparametric confidence intervals for a population quantile are developed. Algorithms for computing coverage probabilities for these confidence intervals are presented, and the use of interpolated confidence intervals is recommended as a means to approximately achieve coverage probabilities that cannot be achieved exactly. A simulation study based on finite populations of sizes 20, 30, 40, and 50 shows that the three sampling protocols follow a strict ordering in terms of the average lengths of the confidence intervals they produce. This study also shows that all three ranked-set sampling protocols tend to produce confidence intervals shorter than those produced by simple random sampling, with the difference being substantial for two of the protocols. The interpolated confidence intervals are shown to achieve coverage probabilities quite close to their nominal levels. Rankings done according to a highly correlated concomitant variable are shown to reduce the level of the confidence intervals only minimally. An example to illustrate the construction of confidence intervals according to this methodology is provided.  相似文献   

16.
The exchange of genetic information between coral reefs through the transport of larvae can be described in terms of networks that capture the linkages between distant populations. A key question arising from these networks is the determination of the highly connected modules (communities). Communities can be defined using genetic similarity or distance statistics between multiple samples but due to limited specimen sampling capacity the boundaries of the communities for the known coral reefs in the seascape remain unresolved. In this study we use the microsatellite composition of individual corals to compare sample populations using a genetic dissimilarity measure (FST) which is then used to create a complex network. This network involved sampling 1025 colonies from 22 collection sites and examining 10 microsatellites loci. The links between each sampling site were given a strength that was created from the pair wise FST values. The result is an undirected weighted network describing the genetic dissimilarity between each sampled population. From this network we then determined the community structure using a leading eigenvector algorithm within graph theory. However, given the relatively limited sampling conducted, the representation of the regional genetic structure was incomplete. To assist with defining the boundaries of the genetically based communities we also integrated the communities derived from a hydrodynamic and distance based networks. The hydrodynamic network, though more comprehensive, was of smaller spatial extent than our genetic sampling. A Bayesian Belief network was developed to integrate the overlapping communities. The results indicate the genetic population structure of the Great Barrier Reef and provide guidance on where future genetic sampling should take place to complete the genetic diversity mapping.  相似文献   

17.
Spatial autocorrelation in wildlife observation data arises when extrinsic environmental processes and patterns that influence the spatial distribution of wildlife are themselves spatially structured, or when species are subject to intrinsic population processes, causing contagion or dispersion effects. Territoriality, Allee effects, dispersal limitations, and social clustering are examples of intrinsic processes. Both forms of autocorrelation can violate the assumptions of generalized linear regression models, resulting in biased estimation of model coefficients and diminished predictive performance. Such consequences may be avoided for extrinsic autocorrelation when autocorrelated environmental variables are available for use as model covariates, whereas intrinsic spatial autocorrelation requires an alternative modeling approach. The autologistic model provides an approach suited to the binary observations often obtained in wildlife surveys, but its performance has not been tested across widely varying sampling intensities or strengths of intrinsic spatial structure. Here we use simulated data to test the autologistic model under a range of sampling conditions. The autologistic model obtains better fits and substantially better predictive performance than the standard logistic regression model over the full range of sampling designs and intensities tested. We provide a simple Bayesian implementation of the autologistic model, which until now has not been achieved with standard statistical software alone. A step-by-step procedure is given for characterizing and modeling spatial autocorrelation in binary observation data, along with computer code for fitting autologistic models in WinBUGS, a freeware Bayesian analysis package. This approach avoids normal approximations to the pseudo-likelihood, in contrast to previous Bayesian applications of the autologistic model. We provide a sample application of the autologistic model, fitted to survey data for a gliding marsupial in southeastern Australia.  相似文献   

18.
Marine protected areas (MPA) produce a positive effect on fish populations, but this may be difficult to identify due to the high temporal variability of populations. Meta-analysis is an option for analysing data from different sources and sampling designs and it can address problems related to temporal and spatial variability in fish populations. We analysed fish abundance data from visual counts conducted in summer, from 1996 to 2002, in the MPA of Tabarca (Alicante, Spain). The results showed an overall positive effect of protection at the species and family levels. Overall abundance of fishes inside the reserve was, on average, 1.22 times higher than outside the reserve boundaries. Positive effect of protection was found for Boops boops, Diplodus annularis, Diplodus cervinus, Epinephelus marginatus, Epinephelus costae and Epinephelus aenus. Species of Labrids were not affected by protection, except for Thalassoma pavo and Symphodus ocellatus. Meta-analysis of temporal data allows evaluation of the protection MPA provide and is particularly useful when data sources have different experimental designs or sampling programs. The Tabarca MPA has benefited fish populations by increasing their abundance and we suggest that meta-analysis is a complementary tool for the management of MPAs.  相似文献   

19.
Social Network Analysis has become an important methodological tool for advancing our understanding of human and animal group behaviour. However, researchers tend to rely on arbitrary distance and time measures when defining ‘contacts’ or ‘associations’ between individuals based on preliminary observation. Otherwise, criteria are chosen on the basis of the communication range of sensor devices (e.g. bluetooth communication ranges) or the sampling frequencies of collection devices (e.g. Global Positioning System devices). Thus, researchers lack an established protocol for determining both relevant association distances and minimum sampling rates required to accurately represent the network structure under investigation. In this paper, we demonstrate how researchers can use experimental and statistical methods to establish spatial and temporal association patterns and thus correctly characterise social networks in both time and space. To do this, we first perform a mixing experiment with Merino sheep (Ovis aries) and use a community detection algorithm that allows us to identify the spatial and temporal distance at which we can best identify clusters of previously familiar sheep. This turns out to be within 2–3 m of each other for at least 3 min. We then calculate the network graph entropy rate—a measure of ease of spreading of information (e.g. a disease) in a network—to determine the minimum sampling rate required to capture the variability observed in our sheep networks during distinct activity phases. Our results indicate the need for sampling intervals of less than a minute apart. The tools that we employ are versatile and could be applied to a wide range of species and social network datasets, thus allowing an increase in both the accuracy and efficiency of data collection when exploring spatial association patterns in gregarious species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号