首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
利用处理量为120m3/d的臭氧/陶瓷膜-生物活性炭(BAC)组合工艺处理微污染原水,对工艺性能和BAC中的微生物多样性和种群结构进行了研究.结果显示,组合工艺可有效去除微污染原水中的有机物和氨氮.臭氧曝气提高了溶解氧浓度,改善了后续BAC工艺对氨氮的去除效果.组合工艺对氨氮和CODMn的总去除率分别约为90%和84%,其中BAC在污染物的去除中发挥了重要作用.组合工艺和传统工艺中BAC床层共检测到36个门类的细菌.与传统BAC工艺相比,臭氧/陶瓷膜降低了后续BAC中微生物群落结构的多样性和均匀度.组合工艺BAC中存在丰度较高的亚硝化单胞菌属和硝化螺旋菌属,可能对氨氮的去除具有重要的作用.臭氧/陶瓷膜对后续BAC中致病菌和条件致病菌有很好的预处理和抑制作用,显著降低了其相对丰度,提高了饮用水的生物安全性.  相似文献   

2.
利用处理量为3L/d的臭氧陶瓷膜-生物活性炭(BAC)(工艺Ⅰ)和陶瓷膜-BAC(工艺Ⅱ)2种组合工艺处理受污染的原水,研究了工艺对原水中浊度、氨氮和有机物的去除效果,同时考察了臭氧对膜通量和BAC的影响.结果表明,未投加臭氧和2.0mg/L臭氧投加量下,两种组合工艺可去除原水中96%以上的浊度.组合工艺均可去除原水中1.0~2.0mg/L的氨氮.提高溶解氧浓度至30mg/L可强化氨氮的去除能力,两种组合工艺可至少彻底去除5.5mg/L的氨氮.投加2mg/L臭氧后,工艺Ⅰ可去除原水中48.3%的总有机碳(TOC)和51.8%的UV254.工艺Ⅱ对TOC和UV254的平均去除率分别为51.1%和48.2%.臭氧对浊度的去除无影响,但臭氧可改变部分有机物的结构,减轻膜的有机物污染.与未投加臭氧的工艺Ⅱ相比,投加臭氧使工艺Ⅰ中的膜通量提高了25%~30%.但残留臭氧可能影响后续BAC中的微生物,对BAC去除氨氮和有机物的能力产生不利影响.  相似文献   

3.
刘小琳  刘文君 《环境科学》2007,28(4):924-928
采用PCR-SSCP(单链构象多态性)技术,以16S rRNA基因的V4-V5区为靶对象,分析用于饮用水处理的生物陶粒和生物活性炭上的微生物群落结构.对生物陶粒和生物活性炭上的微生物分别进行超声波洗脱、R2A和LB平板培养后提取基因组DNA.结果表明,除生物活性炭超声波洗脱不能提取到DNA外,其他处理均能提取到大小在10 kb以上的基因组DNA,但所提取的量有较大差异.以提取的DNA为模板分别进行PCR,均能扩增到408 bp的基因片段.这些片段经λ核酸外切酶消化处理后进行SSCP电泳.结果显示,超声波洗脱、R2A和LB培养对试验结果影响不明显.生物陶粒的微生物基因扩增片段SSCP图谱相同,且只出现1条带.测序后与基因组数据库对比,结果显示其与uncultured Pseudomonas sp. clone FTL201 16S rDNA (GenBank登录号AF509293.1)片段同源性为92%.生物活性炭的微生物基因扩增片段SSCP图谱也相同,但有2条带.测序对比的结果表明, 这2个基因片段与Bacillus sp. JH19 16S rDNA (GenBank 登录号DQ232748.1)片段和Bacterium VA-S-11 16S rDNA (GenBank登录号AY395279.1)片段的同源性分别为100%和99%.  相似文献   

4.
臭氧—生物活性炭净水工艺研究   总被引:6,自引:0,他引:6  
采用活性炭物理化学吸附、臭氧化学氧化、生物氧化降解及臭氧灭菌消毒4种技术合为一体的工艺,对自来水进行深度处理,并据此研制净水器。结果表明,本工艺流程合理,结构紧凑,管理方便,并能高效地去除常规水处理工艺不能去除的水中溶解性有机物及致突变物,获得安全、优质的饮用水。  相似文献   

5.
杜尔登  郑璐  冯欣欣  高乃云 《环境科学》2014,35(11):4163-4170
通过限制性片段长度多态性技术考察了饮用水深度处理中5种不同来源生物活性炭的微生物群落多样性和结构.单宁酸与腐殖酸吸附值相对较高的A炭、B炭和C炭的多样性指数较为接近,其微生物多样性更为丰富,而单宁酸与腐殖酸吸附值相对较低的D炭、E炭多样性指数较低.生物活性炭样品的系统发育树中包含β-Proteobacteria、α-Proteobacteria、Planctomycetes、γ-Proteobacteria、Bacteroidetes等5类种群.其中β-Proteobacteria和α-Proteobacteria是微生物群落的优势种群,对水中有机物的去除起到重要的作用.Planctomycetes、γ-Proteobacteria和Bacteroidetes是微生物群落的非优势种群.Bacteroidetes出现在A炭、B炭、C炭和D炭中,而没有出现在E炭中.研究结果进一步加深了对生物活性炭中微生物群落的认识,为确保饮用水质安全提供理论基础.  相似文献   

6.
为探究饮用水处理过程中臭氧(O3)对生物活性炭(BAC)中微生物及出水消毒副产物(DBPs)的影响,以饮用水小试装置的O3-BAC工段开展研究,系统分析在不同O3浓度下的水质变化,溶解性有机物(DOM)特征,微生物活性和DBPs产生情况.结果表明,O3对BAC过滤的影响主要表现为提升微生物对DOM的利用效率,但O3浓度过高会导致出水中蛋白质和微生物代谢产物(SMPs)等有机物增加.当O3浓度从0 mg·L-1提升到2. 0 mg·L-1时,BAC中微生物存活率从95. 10%降至62. 60%,但O3将出水中难降解有机物转变为易生物降解物质,使得微生物活性提高了62. 52%,BAC的生物过滤得到强化;当O3浓度增加到4. 0 mg·L-1时,微生物存活率降至49. 90%,同时微生物产生的蛋白质和SMPs增加,导致含碳消毒副产物(CDBPs)和含...  相似文献   

7.
臭氧——生物活性炭技术在微污染水处理中的应用   总被引:14,自引:0,他引:14  
分析了臭氧-生物活性炭法的基本作用原理以及介绍了国内研究和应用该法的情况,并提出了应用该法所需注意的一些问题。  相似文献   

8.
黎镛  袁辉洲  柯水洲  祝凉  李展鹏 《环境工程》2021,39(12):100-106
通过选用聚氨酯吸水凝胶(porous polymer carriers, PPC)、聚氨酯海绵(polyurethane, PU)、聚丙烯(polypropylene, PP)3种材质的微生物载体,对分别投加这3种载体的移动床生物膜反应器(MBBR)的启动性能、氮去除性能及微生物群落结构进行对比分析。结果表明:在进水氨氮浓度为20 mg/L的情况下,PPC及PU载体表现出较好的挂膜启动性能和氨氮去除性能,出水氨氮平均浓度在5 mg/L左右,而PP载体的出水氨氮平均浓度将近7 mg/L,且去除效果稳定性较差;此外PU载体和PP载体的反硝化效果不理想,出水硝态氮平均浓度分别为6.07,4.87 mg/L,比PPC载体(2.80 mg/L)高出许多。微生物测序结果表明,微生物载体的选择对MBBR工艺微生物群落结构有一定影响,但Proteobacteria和Bacteroidetes始终是占比最大的细菌门类。属水平的分析表明PPC载体上存在较高丰度的反硝化Denitratisoma菌属,且PPC载体独特的结构和亲水性有助于营造缺氧环境,提高反应器整体脱氮性能和稳定性。  相似文献   

9.
预臭氧与后臭氧-生物活性炭联用工艺研究   总被引:3,自引:0,他引:3  
利用静态批量和动态连续试验初步研究了预臭氧及预臭氧与后臭氧-BAC组合工艺对南方某含溴离子水库水的处理效果和相应的处理条件.静态实验结果表明,预臭氧反应量在0.5~1.0mg/L范围内,在有效去除消毒副产物(DBPFP,主要包括THMFP和HAAFP)的同时,臭氧副产物溴酸可以控制在10μg/L以下,而继续增加臭氧反应量则会导致DBPFP的增加.当水中溴离子浓度达到96μg/L时,使用臭氧必须采取溴酸控制措施.连续动态实验结果表明,预臭氧与臭氧-生物活性炭组合工艺对于2μm以上颗粒物、CODMn、TOC等的去除均有明显的效果,可以进一步抑制DBPs的形成.  相似文献   

10.
刘帅霞  汪蕊 《能源环境保护》2007,21(4):40-42,44
通过预臭氧和生物活性炭工艺对饮用水进行深度处理研究,结果证明:该工艺对CODMn、UV254、三卤甲烷生成势(THMFP)、藻类和浊度的平均去除率分别为46.5%、46.5%、45.6%、91.2%和98%,最终出水浊度达到0.2NTU,CODMn≤3mg/L,提高了饮用水的安全性.  相似文献   

11.
Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.  相似文献   

12.
利用饮用水厂运行10年的生物活性炭(BAC)装填滤柱,研究活性炭老化对滤柱过滤阻力和处理效果的影响.结果表明,活性炭老化会产生大量小粒径颗粒炭,沉积于活性炭池表层的小粒径颗粒炭产生的过滤阻力是滤柱总阻力的主要来源,其比阻约为底层炭的22倍.强化反冲洗仅可降低初始过滤阻力,移除表层细炭是降低活性炭滤池阻力的有效方法.强化反冲洗对滤柱过滤性能无显著影响.移除表层细炭后,老化活性炭滤柱对总有机碳的去除率由24.71%下降至7.04%,而后恢复至移除前的水平.移除表层炭后老化活性炭对UV254和大于2μm颗粒数的去除率与对照组活性炭相似.降低活性炭滤池的反冲强度、延长过滤周期是延长老化活性炭寿命的有效方法.  相似文献   

13.
臭氧氧化对陶瓷膜超滤工艺降低饮用水中浊度的影响   总被引:3,自引:1,他引:2  
利用臭氧陶瓷膜超滤集成工艺,研究了臭氧对陶瓷膜超滤工艺处理不同浊度原水的影响.实验用陶瓷膜平均孔径为100 nm.结果表明,与不投加臭氧的情况相比,投加3 mg·L-1臭氧可将浊度为14、52、108和510 NTU原水的膜通量提高18.2%~104.9%,投加5 mg·L-1臭氧可将此值提高至21.7% ~116.3%,而投加1~2 mg·L-1臭氧对膜通量的改善不明显.投加5mg·L-1臭氧可将CODMn的去除率提高至28.7% ~46.9%,投加1~3 mg·L-1臭氧对CODMn的去除率无显著影响,膜出水有机物浓度有所升高.臭氧氧化后原水中小分子量有机物增多,降低了膜的有机物污染程度,有利于膜通量改善.集成工艺出水中2~3 μm颗粒物数量为10 ~36个·mL-1.臭氧氧化导致陶瓷膜过滤初期出水中颗粒物数量略微升高.本研究对于水中颗粒物通过陶瓷超滤膜孔的探讨,以及改善膜对颗粒物的去除具有重要的指导意义.  相似文献   

14.
The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m 3 ·day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.  相似文献   

15.

臭氧-粉末活性炭(O3-PAC)废水处理技术具备发展潜力,但废水与PAC无法有效分离成为该技术的瓶颈。利用陶瓷膜技术构建了O3-PAC-陶瓷膜去除苯酚耦合体系,采用反应动力学、串联阻力模型以及Hermans-Bredee模型分别对COD去除和PAC膜分离性能进行研究。结果表明:O3-PAC在40 min内对COD去除率达到100%,反应速率是臭氧-颗粒活性炭(O3-GAC)的2.5倍;采用陶瓷膜对PAC和废水进行分离,操作压力超过0.06 MPa时,可逆污染向不可逆污染转化;膜污染是由完全堵塞向滤饼堵塞转化的过程,提高废水在膜表面的流速可以破坏滤饼层的形成;试验连续进行6个周期后,40 min时模拟废水的COD去除率保持在95%以上,但不可逆污染有增加的趋势。

  相似文献   

16.
温度对生物炭滤池处理高氨氮原水硝化的影响   总被引:19,自引:0,他引:19       下载免费PDF全文
利用臭氧预氧化-生物预处理-混凝沉淀-砂滤-臭氧后氧化-生物活性炭滤池组合工艺对微污染水源水进行了深度处理中间试验.将一部分未经生物预处理的高氨氮原水经常规处理后进入生物活性炭滤池以提高活性炭滤池进水氨氮浓度.研究了温度对高氨氮进水条件下生物活性炭滤池硝化能力的影响.试验表明,生物活性炭(BAC)的生物活性随温度的降低而降低.在水温2℃左右时,生物活性炭滤池对氨氮的去除能力相当于6℃以上时去除能力的50%;在温度>6℃的条件下,生物活性炭滤池对氨氮的去除能力在进水溶解氧基本相同时不随温度(水温>6℃)的变化而发生变化,对氨氮的去除能力主要受水中溶解氧的影响.  相似文献   

17.
在污泥停留时间(SRT)为3 d的条件下,探究了不同水力停留时间(HRT)条件下(4、6、8、12和16 h)的超短龄活性污泥系统碳、磷去除效果、机制,以及微生物群落结构特征.结果表明,在HRT=8 h及以上时短活性污泥系统才会有稳定的碳、磷去除效果,去除率分别能达到80%和90%以上;去除机理为吸附和生物作用,但COD和磷以吸附的方式去除比例随HRT的延长而减小,分别从47.2%和89.1%降低至35.9%和33.6%.微生物群落结构分析表明,短SRT系统中主要的优势微生物种类与传统活性污泥系统相似,除磷由传统聚磷菌(PAOs)和反硝化聚磷菌(DPAOs)共同完成,相对丰度随着HRT的延长而增加.  相似文献   

18.
生物活性炭流化-泥滤耦合硝化与反硝化试验   总被引:1,自引:0,他引:1  
构建生物活性炭流化-泥滤耦合系统,以果壳活性炭为载体,通过连续进水试验研究了系统的硝化与反硝化特性.同时考察了生物活性炭的形成过程及其特征.试验结果表明,通过对反应器中悬浮污泥的排除和进水条件的控制可形成生物活性炭.生物膜在活性炭上的分布受循环流体作用影响,具有独特的空间和微生物生理分布特征.在反应器COD容积负荷约2.2ks·m-3d-3和氨氮容积负荷约0.2ks·m-3d-3的进水条件下,系统对COD和氨氮去除率可分别达到92%和70%;通过对出水的泥滤控制,可以有效地增强系统的反硝化能力;出水pH值的变化也反映出系统兼具硝化与反硝化的效能.  相似文献   

19.
活性炭优化生物阴极提升微生物燃料电池产电性能   总被引:3,自引:0,他引:3  
对双室好氧生物阴极微生物燃料电池的阴极电极材料进行了优化.使用碳纤维刷阴极启动,进入稳定期后向反应器阴极室投加活性炭颗粒(T2)和活性炭粉末(T3),以提升微生物燃料电池的产电性能.实验结果表明,向阴极投加活性炭可以迅速提高微生物燃料电池的输出电压.投加活性炭颗粒后,T2的开路电压和最大功率密度分别提高了42%和237%;投加活性炭粉末后,T3的开路电压和最大功率密度分别提高了12%和42%.优化后的微生物燃料电池对COD的去除率分别是91.5%、90.3%,库仑效率分别提高了54.4%和17.9%.投加活性炭颗粒效果更好,可以显著提高微生物燃料电池产电性能,同时提高微生物燃料电池的COD去除率和库仑效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号