首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
采用情景分析的方法,建立了不同情景下中国有色金属冶炼行业的汞排放趋势,并分析了主要控制措施对该行业大气汞减排的贡献.研究发现,中国有色金属冶炼行业2030年的最大减排潜力将达到122.3t,比2012年降低82.9%.其中,锌、铅和铜冶炼的大气汞排放量将分别减少77.8t、42.7t和1.8t.为减少大气汞排放,锌冶炼将主要通过完善大气污染控制措施实现.其中2020年和2030年采用该措施将分别减少51.0t和23.9t的大气汞排放量.铜冶炼主要通过增加再生铜比例实现大气汞减排.2020年和2030年,该措施大气汞减排量分别占铜冶炼总减排量的61.1%和72.5%.2020年前,铅冶炼的大气汞减排主要通过淘汰落后产能和完善协同控制设备实现,将贡献88.8%的总减排量.2020~2030年,铅冶炼通过增加再生铅比例贡献65.3%的总减排量.  相似文献   

2.
我国政府已于2016年8月正式批准《关于汞的水俣公约》,大气汞污染防治是我国履约工作的重中之重,在我国的大气汞排放源中,燃煤部门的排放量占40%以上,是首要的控制对象,优先制定燃煤部门大气汞排放控制对策具有重要意义。本文分析了我国燃煤部门的履约要求,并从建立并更新燃煤部门大气汞排放清单、推行最佳可得技术/最佳环境实践(BAT/BEP)、实行全国汞减排总量控制、采用浓度控制和脱汞效率控制相结合的排放标准、强化汞污染防治监管体系五个方面,提出了我国燃煤部门履行《关于汞的水俣公约》的对策建议,为我国大气汞污染防治提供技术支持。  相似文献   

3.
中国燃煤汞排放清单的初步建立   总被引:69,自引:15,他引:54  
建立中国分省燃煤汞排放清单,对于研究汞的大气化学转化、迁移和沉降,制定中国汞污染控制对策具有重要意义.本研究按经济部门、燃料类型、燃烧方式和污染控制技术将排放源划分为65种不同类型,根据各类型的煤炭消费量、燃料汞含量和汞排放因子计算汞排放量,最终建立了分省燃煤汞排放清单.用2组原煤汞含量数据资料计算的2000年中国燃煤大气汞排放量分别为161.6 t和219.5 t,其中绝大部分汞排放来自工业、电力和生活消费,分别占46%、35%和14%.Hg0、Hg2+和Hgp在中国燃煤大气汞排放中所占的比例分别为16%、61%和23%.中国燃煤汞排放在各地区间有较大差异,排放量较大的省份有河南、山西、河北、辽宁和江苏,均超过10t/a.  相似文献   

4.
程轲  王艳  薛志钢  田宏  易鹏 《环境科学研究》2015,28(9):1369-1374
为评估GB 13223─2011《火电厂大气污染物排放标准》实施对燃煤电厂大气Hg(汞)减排的影响,采用“自下而上”排放因子法,对燃煤电厂大气Hg排放量进行了估算,通过设计不同发展情景,对排放标准实施条件下我国燃煤电厂大气Hg减排量(不含港澳台地区数据,下同)进行了预测. 结果表明:不同能耗情景下,预计2015年燃煤电厂的煤炭消费量为18.5×108~20.3×108 t,2020年煤炭消费量可达19.7×108~22.5×108 t;GB 13223─2011实施后,大气污染控制设施包括ESP(静电除尘器)、FF(袋式除尘器)、WFGD(湿法脱硫)和SCR(选择性催化还原脱硝)的应用比例亟需提高,控制设施面临提效改造,主要控制技术组合SCR+ESP+WFGD在2015年和2020年的应用比例将达到40%、75%;改造后技术组合FF+WFGD、ESP+WFGD、SCR+ESP+WFGD可分别实现90%、85%、80%的脱Hg效率. 由此可为我国燃煤电厂大气Hg排放带来巨大的协同减排潜力,与2010年约119 t的排放水平相比,2015年和2020年在低能耗情景下,我国燃煤电厂大气Hg减排幅度可分别高达38%和39%. 为进一步提高燃煤电厂大气的Hg减排量,建议逐步推广应用活性炭喷射(ACI)等技术.   相似文献   

5.
中国燃煤电厂汞的物质流向与汞排放研究   总被引:4,自引:0,他引:4  
为研究中国燃煤电厂中汞的去向,基于2010年中国各省份燃煤中的汞含量、燃煤消耗量、燃煤电厂大气污染控制设备的安装比例以及粉煤灰、脱硫石膏的二次利用方式,计算了我国燃煤电厂2010年向大气、水体、土壤中排放汞的量.2010年我国电厂燃煤共输入汞271.7t (147.1~403.6t).煤炭在电厂燃烧一次排放到大气中的汞为101.3t (44.0~167.1t),进入燃煤副产物、水体的汞分别为167.4t (84.3~266.3t),3.0t (1.2~5.0t).燃煤副产物二次利用过程向大气排放的汞为32.7t (12.5~56.1t),进入土壤中的汞为58.6t (33.6~103.9t),还有76.1t (30.3~108.6t)汞留在了产品中.结果表明,粉煤灰用于水泥生产和粉煤灰制砖是副产物向大气中二次排放的重要源,分别占总二次排放量的81.7%和15.3%.  相似文献   

6.
为研究燃煤电厂在燃煤发电机组结构优化调整和不同末端控制措施条件下PM2.5的排放情况,以2012年为基准年,设计了分阶段、分地区不断优化的控制情景(基准、适中、加严和最严情景),并依据《大气细颗粒物一次源排放清单编制技术指南(试行)》建立的减排潜力模型对2017年、2020年和2030年我国燃煤电厂PM2.5减排潜力及空间分布进行预测分析. 结果表明:通过燃煤发电机组结构优化调整,2017年、2020年和2030年我国燃煤电厂PM2.5排放量与调整前相比可分别减少3.62×104、8.52×104和24.43×104 t,但相对于基准年而言,PM2.5排放量并未减少;进一步结合末端控制措施优化进行控制,PM2.5最大减排潜力(相对于基准年而言)可分别达到59.42×104±7.83×104、82.83×104±5.82×104和81.89×104±6.76×104 t,最高减排比例分别达到66.5%±8.8%、92.8%±6.5%和91.6%±7.6%. 我国各省(市/区)燃煤电厂PM2.5减排潜力与其煤耗量和采取的控制措施有关,燃煤量越大,控制措施越严格,则减排潜力越大. 京津冀、长三角和珠三角地区燃煤电厂在实现超低排放,即最严情景下2017年PM2.5减排潜力分别为5.93×104、12.04×104和4.70×104 t;2017年、2020年和2030年这3个区域PM2.5总减排潜力分别为22.68×104、22.36×104和22.07×104 t. 内蒙古、江苏、山东、广东、河北和山西等地在实施超低排放后,其PM2.5减排潜力均超过4×104 t,并且在全国范围内实施超低排放可显著降低我国燃煤电厂PM2.5排放量.   相似文献   

7.
西安市工业燃煤汞排放清单   总被引:1,自引:0,他引:1  
依据燃煤汞含量、燃煤汞排放因子和西安市工业行业燃煤消费量建立西安市燃煤大气汞排放清单。2003年西安市工业燃煤汞大气排放量为0.33t,热电厂、化学品制造和造纸业是燃煤汞大气排放的最主要行业,其中热电厂占42.0%。排放清单的建立为西安市制定燃煤大气汞污染调控措施和评价燃煤汞污染的环境风险提供了科学的基础依据。  相似文献   

8.
1980—2007年我国燃煤大气汞、铅、砷排放趋势分析   总被引:5,自引:0,他引:5  
基于文献调研,对1980—2007年我国汞、铅、砷3种主要燃煤大气重金属排放清单进行归纳,计算了3种重金属的逐年平均排放量,并分析排放量与燃煤量的相关性、单位煤耗大气重金属污染物排放量的变化趋势及原因. 结果表明:1980—2007年我国燃煤大气汞、铅、砷排放量与燃煤量增长趋势基本一致,均呈显著正相关(R2分别为0.911、0.971、0.996),但燃煤大气汞排放量与燃煤量间的相关性却比铅、砷排放量与燃煤量的相关性小很多,这主要是燃煤电厂对汞协同脱除能力比对铅、砷强,以及电厂汞排放所占比例较大所致. 燃煤大气汞排放量在2005年后趋于稳定,而铅、砷排放量在2000年后快速增长,年均增速均超过10%,其中电厂和工业锅炉是重金属排放的重点行业. 在燃煤量不断增长的背景下,单位煤耗的大气汞、铅排放量均呈下降趋势,其中汞排放量在2005—2007年年均降低5.0%,铅排放量在1996—2007年年均降低1.7%. 这与我国主要燃煤行业除尘、脱硫、脱硝等大气污染控制装置对重金属的协同脱除能力不断增强有密切关系.   相似文献   

9.
中国非燃煤大气汞排放量估算   总被引:16,自引:6,他引:10  
本研究根据各种非燃煤大气汞排放源的活动水平和排放因子,估算了1995~2003年中国分省非燃煤大气汞的排放量。2003年中国非燃煤大气汞排放量为393t,比燃煤汞排放多137t。在非燃煤大气汞排放中,84%来自有色金属冶炼,其中锌冶炼、铅冶炼、铜冶炼和黄金冶炼分别占总排放的51%、18%、4%和11%。Hg0、Hg2+和HgP在中国非燃煤大气汞排放中所占比例分别为77%、18%和5%。中国非燃煤汞排放在各地区间有较大差异,排放量超过30t?a-1的省区包括湖南、河南和云南,排放强度超过1t?km-2的省区包括上海、湖南、河南、辽宁和广东,这些地区的主要汞排放源为有色金属冶炼和生活垃圾焚烧。1995~2003年中国非燃煤大气汞排放的年均增长率为9%,其中生活垃圾焚烧排放的年均增长率最高,达到42%。  相似文献   

10.
重庆大气汞人为排放及其预测   总被引:4,自引:0,他引:4       下载免费PDF全文
利用排放因子法和灰色预测法对重庆大气汞人为排放进行了研究. 重庆大气汞人为排放量从1997年的6.18 t增加到2008年的13.47 t. 重庆自1997年成为直辖市以来,大气汞排放量累计达99.76 t,年均增长率为9.82%,其中燃煤和水泥生产汞排放量分别达58.34和22.37 t. 以1997─2008年重庆大气汞人为排放数据为依据,运用灰色系统理论建立GM(1,1)大气汞人为排放预测模型,预测了2009─2015年重庆大气汞排放趋势. 如果不采取控制措施,预计2015年重庆大气汞人为排放量约30.92 t,年均增长率将高达16.20%.   相似文献   

11.
为探究中国超低排放燃煤电厂汞及其他有害痕量元素未来标准制定的可行性及建议,综合比对了中国与欧盟、美国等发达国家燃煤电厂大气痕量元素排放标准限值,并基于燃煤电厂现场测试相关文献调研分析,系统地评估了中国燃煤电厂汞及其他9种典型痕量元素(砷、铅、硒、镉、铬、锑、钴、镍和锰)的排放现状.结果表明:与美国、欧盟、加拿大等发达国家相比,目前我国燃煤电厂大气污染物排放标准限定的痕量元素污染物种类较为单一(仅规定了烟气汞及其化合物排放限值,≤30μg/m3)且排放标准限值较为宽松;在全国燃煤电厂已普遍完成超低排放升级与改造的新形势下,现行的《火电厂大气污染物排放标准》(GB13223-2011)已难以起到对燃煤电厂大气汞及其他痕量元素排放控制的实际限制作用和对先进新技术的示范引领作用.作为世界上的最大燃煤消费国,中国燃煤电厂每年消耗煤炭占中国煤炭消费总量的一半左右,是国际社会和《关于汞的水俣公约》重点关注的排放源.因此,推动燃煤电厂大气汞排放标准限值的修订及其他有害痕量元素排放标准的制定,对于保护生态环境和公众健康及国际履约均具有较大的可行性及重要的现实意义.  相似文献   

12.
Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF + WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments.  相似文献   

13.
参照测量不确定度评定与表示的国家技术规范,基于近年来我国燃煤电厂常规污控设备协同脱汞的现场测试数据(文献报道和实测值)及各省原煤w(汞)的实测值,初步构建了国内燃煤电厂烟气汞排放不确定度的计算方法,并以2010年的燃煤量、污控方式布局为基础,计算了该年度汞排放的不确定度. 结果表明:2010年我国燃煤电厂烟气汞排放的总不确定度为48.8t,占平均排放总量的34.3%;其中60.2%源于污控设备脱汞效率的不确定度,39.8%源于原煤w(汞)的不确定度;采用ESP(静电除尘)、ESP+WFGD(静电除尘+湿法脱硫)、SCR+ESP+WFGD(选择性催化还原脱硝+静电除尘+湿法脱硫)和FF(袋式除尘)大气污控组合的机组各存在6.0、32.2、9.7和0.9t的烟气汞排放不确定度,分别占各对应机组烟气汞排放量的19.3%、32.8%、84.6%和53.6%,其中SCR+ESP+WFGD污控组合烟气汞排放的相对不确定度最大. 随着我国烟气脱硝工作全面推行,2015年以后,SCR+ESP+WFGD污控措施(组合)的机组所占比例将会提高到66%以上,如果仍以现有数据为基础,则来自SCR+ESP+WFGD污控措施(组合)机组的烟气汞排放不确定度将会大幅增加,因此急需增加对该类装置脱汞效率的实测样本数量.   相似文献   

14.
中国燃煤汞排放量估算   总被引:119,自引:1,他引:118  
研究了中国煤炭的汞含量及主要用煤行业燃煤汞排放因子.结合有关统计资料计算了我国各行业和各地区燃煤汞的排放量.全国煤炭的平均汞含量为0.22mg/kg ,主要燃煤行业中大气汞排放因子为64.0 % ~78.2 % .1995年全国燃煤共排放汞302.9t,其中向大气中排汞量为213.8t,排入灰渣及产品中的汞为89.07t.1978(1995 年全国燃煤大气汞排放量的年平均增长速度为4.8 % ,累积排汞量为2493.8t ;北京、上海、天津等超大城市排汞强度较高;燃煤汞排放是中国面临的重要环境问题.  相似文献   

15.
聂国欣  袁博  王添颢 《中国环境科学》2019,39(11):4599-4603
基于2015年我国不同地区原油及天然气产量和区域分布的统计数据,利用联合国环境署确定的汞输入因子和输出因子,估算了我国石油开采、炼制环节以及天然气开采、燃烧环节中大气汞的排放量.同时,依据国家发改委发布的石油天然气发展"十三五"规划中制定的预测性指标,以2015年为基准年,针对2020~2030年期间的石油天然气生产加工行业大气汞排放量设定了3个阶段的减排目标,在此基础上计算了不同阶段内两大行业大气汞的减排量和排放量,为国家实现履行《水俣公约》提供基础数据支撑和参考.  相似文献   

16.
燃煤火电厂汞排放因子测试设计及案例分析   总被引:11,自引:6,他引:5  
在火电厂锅炉煤的燃烧中,汞的迁移是个复杂的过程.在炉内高温下,几乎所有的汞以气态形式停留于烟气中,随着烟气温度的降低,汞被再分配到粉煤灰、炉渣和空气中.采用测试和衡算的方法,对火电厂汞排放因子进行测试和分析.结果表明:汞的迁移分配与煤中汞的赋存量、粉煤灰中可燃物碳的含量及烟气温度相关.煤燃烧后,进入粉煤灰中的汞占煤中汞含量的12.7%~31.3%,进入炉渣中的汞占0.9%~12.8%,大部分汞排入大气中,占67.8%~82.2%.   相似文献   

17.
The global waste sector produces, on average, 2–5 % of global anthropogenic greenhouse gas (GHG) emissions. The amount of GHG emissions has grown steadily and is predicted to increase considerable in the forthcoming decades because of the increases in population and gross domestic product (GDP). However, the GHG mitigation opportunities for the sector are still fully not exploited, in particularly in developing countries. A series of initiatives were highly successful and showed that large reductions in emissions are possible. This study aims to propose a holistic quantification model, which can be used for estimation of waste generation and evaluation of the potential reduction of GHG emissions in waste sector for developing countries with a particular application to Vietnam. The two scenarios set for the study were business as usual (BaU) which waste management is assumed to follow past and current trends and CounterMeasure (CM) which alternative waste treatment and management are assessed. Total emissions in the BaU scenario are projected to increase from 29.47 MtCO2eq in 2010 to 85.60 MtCO2eq by 2030 and 176.32 MtCO2eq by 2050. The highest emissions are due to methane (CH4) released by disposal sites, accounting for about 60 % of the GHG emissions from waste in Vietnam in 2030. This emission is projected to increase significantly (67 % in 2050), unless more of the methane is captured and used for energy generation. The CM scenario gives emission reductions from 25.7 % (2020), 40.5 % (2030) to 56.6 % (2050) compared to the BaU scenario. The highest GHG reduction is achieved through recycling, followed by methane recovery to optimize the co-benefit for climate change mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号