首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption.  相似文献   

2.
3.
Poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) are biodegradable polyesters and can be blended by twin-screw extrusion. Epoxy-functional styrene acrylic copolymer (ESA) was used as reactive agent for PLA/PBAT blends and the mechanical properties, phase morphology, thermal properties, melt properties, and melt rheological behaviors of the blends were investigated. During thermal extrusion, ESA was mainly a chain extender for the PLA matrix but had no evident reaction with PBAT. The great improvement in the toughness of PLA based blends was achieved by the addition of PBAT of no less than 15 wt% and that of ESA of no more than 0.5 wt%. Although SEM micrographs and the reduced deviation of the terminal slope of G′ and G″ indicated better compatibility and adhesion between the two phases, the blend with ESA was still a two-phase system as indicated in DSC curves. Rheological results reveal that the addition of ESA increased the storage modulus (G′), loss modulus (G″) and complex viscosity of the blend at nearly all frequencies. The melt strength and melt elasticity of the blend are improved by addition of ESA.  相似文献   

4.
Two biodegradable polyesters, poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) were melt-compounded in a twin screw extruder to fabricate a novel PBS/PBAT blend. The compatibility of the blend was attributed to the transesterification reaction that was confirmed by Fourier transform infrared spectroscopy. The Gibbs free energy equation was applied to explain the miscibility of the resulting blend. Dynamic mechanical analysis of the blends exhibits an intermediate tanδ peak compared to the individual components which suggests that the blend achieved compatibility. One of the key findings is that the tensile strength of the optimized blend is higher than each of the blended partner. Rheological properties revealed a strong shear-thinning tendency of the blend by the addition of PBAT into PBS. The phase morphology of the blends was observed through scanning electron microscopy, which revealed that phase separation occurred in the blends. The spherulite growth in the blends was highly influenced by the crystallization temperature and composition. In addition, the presence of a dispersed amorphous phase was found to be a hindrance to the spherulite growth, which was confirmed by polarizing optical microscopy. Furthermore, the increased crystallization ability of PBAT in the blend systems gives the blend a balanced thermal resistance property.  相似文献   

5.
Poly(lactic acid) (PLA) is a biodegradable material. However, PLA is relatively cost effective. Blending starch with PLA is one of the promising efforts because starch is a widely distributed and inexpensive product. PLA and starch were blended using a rheometer to form composites in this report. Glycerin was added into the blends to make the mixture molecular compatible and more homogeneous. The starch was crosslinked using epichlorohydrin to improve the compatibility of starch with PLA. Two series of composite were fabricated. One was PLA and the crosslinked starch containing 32 wt% glycerin. In this group, the crosslinking degree of the modified starch was varied. The second group was PLA and non-crosslinked starch with varied amount of glycerin added. Micro-structure of the blending composites was observed using a SEM to view the homogeneity of the mixture. The SEM pictures indicated that the compatibility of PLA and starch molecules was poor. The addition of glycerin can change the compatibility of PLA and starch. The higher the glycerin content in the composites, the better the compatibility between PLA and starch. Furthermore, when the starch was crosslinked by epichlorohydrin, the compatibility of PLA and starch can be greatly improved. The compatibility increases with the increase of crosslinking degree. This is due to the change of hydrophilicity of starch because the hydroxyl groups on the starch molecules were crosslinked into ether groups by the epichlorohydrin molecules.  相似文献   

6.
In this study, the biodegradation of PLA films using microorganisms from Lake Bogoria (Kenya) were investigated. The biodegradation tests done using certain strains of thermophilic bacteria showed faster biodegradation rates and demonstrated temperature dependency. The biodegradation of the PLA films was studied using Gel Permeation Chromatography (GPC) and light microscopy. The biodegradation of PLA was demonstrated by decrease in molecular weight. The preparation and characterization of PLA/Gum Arabic blends were also investigated using DSC, TGA, TMA and NMR. In summary, the results obtained in this research show that PLA films undergo fast biodegradation using thermophiles isolated from Lake Bogoria. The PLA/GA blends studies show it is possible to prepare films of varying hydrophobic–hydrophilic properties for various applications.  相似文献   

7.
Neat poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) films and PLLA/PDLA blend films were prepared by solution casting, and their photodegradation by UV-irradiation was investigated using wide-angle X-ray scattering (WAXS), gel permeation chromatography, differential scanning calorimetry, tensile testing, and polarized optical microscopy. The PLLA/PDLA blend film was more photodegradation-resistant than the neat PLLA and PDLA films when photodegradation was monitored by molecular weight, melting temperature, and WAXS crystalline peak positions. This indicates that the chains in both amorphous and crystalline regions of the PLLA/PDLA blend film were photo-cleavage-resistant compared to those of the neat PLLA and PDLA films. The changes in melting temperature and WAXS crystalline peak positions before and after photodegradation respectively indicated the increased crystalline lattice disorder and the decreased crystalline lattice sizes of the neat PLLA and PDLA films, whereas these changes were insignificant for the blend films. Photodegradation caused no significant change in tensile properties, with the exception of significant decreases in the tensile strength and elongation at break of PLLA/PDLA blend film. However, the tensile strength and elongation at break of the PLLA/PDLA blend film retained higher values compared to those of the neat PLLA and PDLA films during photodegradation. In spite of the slower photodegradation of the PLLA/PDLA blend film traced by M n, T m, and WAXS crystalline peak positions than that of neat PLLA and PDLA films, the rapid decrease in tensile strength and elongation at break of the former than that of the latter should be due to the highly-ordered structural difference between them, i.e., the three dimensional dry gel of the former and the spherulites of the latter.  相似文献   

8.
Poly(lactic acid) (PLA) has gained considerable attention nowadays as a biocompatible polymer owing to its advantage of being prepared from renewable resources. PLA exhibits excellent tensile strength, fabricability, thermal plasticity and biocompatibility properties comparable to many petroleum based plastics. However, low heat distortion temperature, brittleness and slow crystallization rate limit the practical applications of PLA. In order to address these limitations, an attempt has been made in the current work to prepare binary blends of PLA with ethylene vinyl acetate (EVA) at different compositions via melt mixing technique. Systematic investigation on the mechanical properties, thermal degradation and crystallization behavior for PLA-EVA blends was carried out. The impact strength of binary blends of PLA–EVA was found to increase significantly by 176% for 15 wt% of EVA compared to virgin PLA. This is due to the strong interfacial adhesion among PLA and EVA resulting in brittle to ductile transition. Scanning electron microscopy analysis for impact fractured surfaces of binary blends of PLA implied the toughening effect of PLA by EVA. Thermogravimetry analysis results revealed that the activation energy of PLA–EVA blends decreased with increase in EVA content in the PLA matrix. While, differential scanning calorimetry results obtained for PLA–EVA blends revealed the improvement in crystallinity when compared with neat PLA. The effect of EVA on non-isothermal melt crystallization kinetics of PLA was also examined via DSC at various heating rates. Decreasing trend in the t1/2 values indicated the faster rate of crystallization mechanism after addition of EVA in the PLA matrix.  相似文献   

9.
The present article summarizes the development of poly(butylene adipate-co-terephthalate) (PBAT) and organically modified layered silicates nanocomposite using a co-rotating twin screw extruder having a blown film unit. Wide angle X-ray diffraction (WAXD) studies indicated an increase in d spacing of the nanoclays in the bio-nanocomposite hybrids revealing formation of intercalated morphology. Transmission Electron Microscopy (TEM) also confirmed presence of partially exfoliated clay galleries as well as layers of intercalated structures within the PBAT matrix in the nanocomposite. Mechanical tests showed that the nanocomposite hybrids prepared using B109 nanoclay exhibited higher tensile modulus. Functionalization of PBAT matrix upon grafting with maleic anhydride (MA) resulted in further improvement in mechanical properties. The existence of interfacial bonds in grafted bio-nanocomposite hybrids are substantiated using FTIR spectroscopy. Thermal properties of nanocomposite hybrids employing DSC, TGA also revealed improved Tg, Tc and thermal stability over the virgin polymer. Dynamic Mechanical Analysis (DMA) indicated an increase of storage modulus (E′) of PBAT biopolymer with incorporation of nanofiller. The biodegradability of PBAT bionanocomposite hybrids showed an increase in the rate of biodegradability with addition of Na+MMT due to hydrophilic nature of the nanoclay.  相似文献   

10.
In this work, two processing aids, acetyl tri-n-butyl citrate and an alkene bis fatty amide (wax), were investigated for their effects on rheological properties, morphology, thermal transition temperatures, and mechanical properties of the poly(lactic acid) (PLA)/soy protein concentrate blends. Acetyl tri-n-butyl citrate and alkene bis fatty amide played different roles in improving the processability of the blends, with the former functioning as a plasticizer for PLA and the latter as an internal/external lubricant. The amide wax was more effective in reducing blend melt viscosity through its dual functions of internal and external lubrication. Acetyl tri-n-butyl citrate displayed a stronger effect in facilitating PLA nucleation than the amide wax. Both processing aids decreased tensile strength and modulus of the blends and increased break strain and impact strength.  相似文献   

11.
12.
Novel biodegradable thermoplastic elastomer based on epoxidized natural rubber (ENR) and poly(butylene succinate) (PBS) blend was prepared by a simple blend technique. Influence of blend ratios of ENR and PBS on morphological, mechanical, thermal and biodegradable properties were investigated. In addition, chemical interaction between ENR and PBS molecules was evaluated by means of the rheological properties and infrared spectroscopy. Furthermore, the phase inversion behavior of ENR/PBS blend was predicted by different empirical and semi-empirical models including Utracki, Paul and Barlow, Steinmann and Gergen models. It was found that the co-continuous phase morphology was observed in the blend with ENR/PBS about 58/42 wt% which is in good agreement with the model of Steinmann. This correlates well to morphological and mechanical properties together with degree of crystallinity of PBS in the blends. In addition, the biodegradability was characterized by soil burial test after 1, 3 and 9 months and found that the biodegradable ENR/PBS blends with optimum mechanical and biodegradability were successfully prepared.  相似文献   

13.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   

14.
This work is focused on the hydrolysis of cotton fibers from waste textiles to obtain micro and nanofibers to be used as reinforcements in polymer composites. To promote their compatibility with polymeric matrix, hydrolyzed cotton fibers were surface modified with various silane compounds. Thus, these fibers were mixed with commercial poly(lactic acid) (PLA) at 5% w/w loading by melt compounding. Acid treatments caused a decrease of the crystallinity index whereas the thermal stability was significantly improved, especially for cellulose fibers hydrolyzed in two steps. Morphological analysis revealed a reduction of the fibers diameter and a decrease of their length as a consequence of the hydrolysis. NMR analysis confirmed the silanization of the fibers by reaction with the silane agent. Tensile tests revealed that silanization treatments were able to increase the composite Young’s modulus and the stress at break with respect to the neat matrix, indicating that silanization improved the polymer/fiber compatibility interfacial adhesion. The overall results demonstrated that applying suitable surface modification strategies, waste cotton textiles can be effectively recycled as fillers in polymer based composites.  相似文献   

15.
Evaluation of Poly(lactic acid) and Sugar Beet Pulp Green Composites   总被引:1,自引:0,他引:1  
Poly(lactic acid) (PLA) and sugar beet pulp (SBP) were compounded by twin-screw extrusion and injection molded into composite forms. Specific mechanical energy decreased with the addition of SBP during processing. PLA–SBP composites retained more tensile strength than expected based on the Nicolais–Narkis model especially at high levels of SBP suggesting adhesion between SBP and PLA. The thermal characteristics of PLA were not affected by thermo-mechanical processing or by the incorporation of SBP up to 30% weight basis. PLA and PLA–SBP composites had similar tensile properties to other thermoplastic resins and may be used as a cost-competitive replacement.
Victoria L. FinkenstadtEmail:
  相似文献   

16.
17.
Polyhydroxybutyrate-co-hydroxyvalerate microspheres (PHBV-MS) were prepared as a delivery system for the herbicide atrazine (ATZ). Characterization of the system included investigation of in vitro release properties and genotoxicity. ATZ − PHBV-MS particle diameters showed a size distribution range of 1–13 μm. Differential scanning calorimetry analyses indicated that ATZ was associated with the PHBV microparticles. The release profiles showed a different release behavior for the pure herbicide in solution, as compared with that containing ATZ-loaded PHBV-MS. Korsmeyer–Peppas model analyses showed that atrazine release from the microparticles occurred by a combination of diffusion through the matrix and partial diffusion through water-filled pores of the PHBV microparticles. A Lactuca sativa test result showed that the genotoxicity of ATZ-loaded PHBV-MP was decreased in relation to ATZ alone. The results demonstrate a viable biodegradable herbicide release system using atrazine for agrochemical purposes.  相似文献   

18.
Finding plastic substitutes based on sustainability, especially for short-term packaging and disposable applications has aroused scientific interest for many years. Starch may be a substitute for petroleum based plastics but it shows severe limitations due to its water sensitivity and rather low mechanical properties. To overcome these weaknesses and to maintain the material biodegradability, one option is to blend plasticized starch with another biodegradable polymer. To improve both the compatibility between the main phases and the performance of the final blend, different compatibilization strategies are reported in literature. However, the relative efficiency of each strategy is not widely reported. This paper presents three different strategies: in situ (i) formation of urethane linkages; (ii) coupling with peroxide between starch and PLA, and (iiii) the addition of PLA-grafted amylose (A-g-PLA) which has been elaborated ex situ and carefully analyzed before blending. This study compares the effect of each compatibilization strategy by investigating mechanical and thermal properties of each blend. Compatibilizing behavior of the A-g-PLA is demonstrated, with a significant increase (up to 60%) in tensile strength of starch/PLA blend with no decrease in elongation at failure.  相似文献   

19.
The present investigation was undertaken to characterize the biodegradation pattern of chemically modified starch films. Chemically modified starch films obtained by esterification of the hydroxyl groups of the polysaccharide have shown lower water sorption than native starch films, being therefore more attractive for a number of processing applications. However, no systematic study characterizing their biodegradation behavior and comparing it with the degradation pattern of native starch films has still been published. In the current contribution we characterized the enzymatic degradation pattern of three derivatized starch films by use of a commercial α-amylase from Bacillus licheniformis. Optimum degradation conditions were chosen upon assaying the effect of enzyme load and temperature on the reaction course of native starch films. Under the conditions selected, comparison of different derivatization procedures revealed that the starch film modified with octanoyl chloride was enzymatically hydrolyzed at a much higher rate than native starch film. Maleated starch films also showed higher susceptibility to α-amylolytic hydrolysis than native starch, whereas acetylated starch showed a hydrolysis pattern similar to that of native starch. Differences in degradation rates of chemically modified films were explained in terms of their amylose content which promotes dense networks that hinder the access of starch-degrading enzymes.  相似文献   

20.
Natural rubber (NR) with polycaprolactone (PCL) core–shell (NR-ad-PCL), synthesized by admicellar polymerization, was acted as an impact modifier for poly(lactic acid) (PLA). PLA and NR-ad-PCL were melt-blended using a co-rotating twin screw extruder. The morphology of PLA/NR-ad-PCL blends showed good adhesion as smooth boundary around rubber particles and PLA matrix. Only 5 wt% of rubber phase, NR-ad-PCL was more effective than NR to enhance toughness and mechanical properties of PLA. The contents of the NR-ad-PCL were varied from 5, 10, 15 and 20 wt%. From thermal results, the incorporation of the NR-ad-PCL decreased the glass transition temperature and slightly increased degree of crystallinity of PLA. Mechanical properties of the PLA/NR-ad-PCL blends were investigated by dynamic mechanical analyser, pendulum impact tester and universal testing machine for tension and flexural properties. The increasing NR-ad-PCL contents led to decreasing Young’s and storage moduli but increasing loss modulus. Impact strength and elongation at break of the PLA/NR-ad-PCL blends increased with increasing NR-ad-PCL content up to 15 wt% where the maximum impact strength was about three times higher than that of pure PLA and the elongation at break increased to 79%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号