首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deforestation and fragmentation are important concerns in managing and conserving tropical forests and have global significance. In the Indian context, in the last one century, the forests have undergone significant changes due to several policies undertaken by government as well as increased population pressure. The present study has brought out spatiotemporal changes in forest cover and variation in forest type in the state of Odisha (Orissa), India, during the last 75 years period. The mapping for the period of 1924–1935, 1975, 1985, 1995 and 2010 indicates that the forest cover accounts for 81,785.6 km2 (52.5 %), 56,661.1 km2 (36.4 %), 51,642.3 km2 (33.2 %), 49,773 km2 (32 %) and 48,669.4 km2 (31.3 %) of the study area, respectively. The study found the net forest cover decline as 40.5 % of the total forest and mean annual rate of deforestation as 0.69 %?year?1 during 1935 to 2010. There is a decline in annual rate of deforestation during 1995 to 2010 which was estimated as 0.15 %. Forest type-wise quantitative loss of forest cover reveals large scale deforestation of dry deciduous forests. The landscape analysis shows that the number of forest patches (per 1,000) are 2.463 in 1935, 10.390 in 1975, 11.899 in 1985, 12.193 in 1995 and 15.102 in 2010, which indicates high anthropogenic pressure on the forests. The mean patch size (km2) of forest decreased from 33.2 in 1935 to 5.5 in 1975 and reached to 3.2 by 2010. The study demonstrated that monitoring of long term forest changes, quantitative loss of forest types and landscape metrics provides critical inputs for management of forest resources.  相似文献   

2.
Deforestation in the biosphere reserves, which are key Protected Areas has negative impacts on biodiversity, climate, carbon fluxes and livelihoods. Comprehensive study of deforestation in biosphere reserves is required to assess the impact of the management effectiveness. This article assesses the changes in forest cover in various zones and protected areas of Nilgiri Biosphere Reserve, the first declared biosphere reserve in India which forms part of Western Ghats-a global biodiversity hotspot. In this study, we have mapped the forests from earliest available topographical maps and multi-temporal satellite data spanning from 1920’s to 2012 period. Mapping of spatial extent of forest cover, vegetation types and land cover was carried out using visual interpretation technique. A grid cell of 1 km?×?1 km was generated for time series change analysis to understand the patterns in spatial distribution of forest cover (1920–1973–1989–1999–2006–2012). The total forest area of biosphere reserve was found to be 5,806.5 km2 (93.8 % of total geographical area) in 1920. Overall loss of forest cover was estimated as 1,423.6 km2 (24.5 % of the total forest) with reference to 1920. Among the six Protected Areas, annual deforestation rate of >0.5 was found in Wayanad wildlife sanctuary during 1920–1973. The deforestation in Nilgiri Biosphere Reserve is mainly attributed to conversion of forests to plantations and agriculture along with submergence due to construction of dams during 1920 to 1989. Grid wise analysis indicates that 851 grids have undergone large-scale negative changes of >75 ha of forest loss during 1920–1973 while, only 15 grids have shown >75 ha loss during 1973–1989. Annual net rate of deforestation for the period of 1920 to 1973 was calculated as 0.5 followed by 0.1 for 1973 to 1989. Our analysis shows that there was large-scale deforestation before the declaration of area as biosphere reserve in 1986; however, the deforestation has drastically reduced after the declaration due to high degree of protection, thus indicating the secure future of reserve in the long term under the current forest management practices. The present work will stand as the most up-to-date assessment on the forest cover of the Nilgiri Biosphere Reserve with immediate applications in monitoring and management of forest biodiversity.  相似文献   

3.
Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 × 103 ha (kilohectare, or kha) and 200 × kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125 561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain.  相似文献   

4.
This study deals with the future scope of REDD (Reduced Emissions from Deforestation and forest Degradation) and REDD+ regimes for measuring and monitoring the current state and dynamics of carbon stocks over time with integrated geospatial and field-based biomass inventory approach. Multi-temporal and multi-resolution geospatial synergic approach incorporating satellite sensors from moderate to high resolution with stratified random sampling design is used. The inventory process involves a continuous forest inventory to facilitate the quantification of possible CO2 reductions over time using statistical up-scaling procedures on various levels. The combined approach was applied on a regional scale taking Himachal Pradesh (India), as a case study, with a hierarchy of forest strata representing the forest structure found in India. Biophysical modeling implemented revealed power regression model as the best fit (R 2?=?0.82) to model the relationship between Normalized Difference Vegetation Index and biomass which was further implemented to calculate multi-temporal above ground biomass and carbon sequestration. The calculated value of net carbon sequestered by the forests totaled to 11.52 million tons (Mt) over the period of 20 years at the rate of 0.58 Mt per year since 1990 while CO2 equivalent reduced from the environment by the forests under study during 20 years comes to 42.26 Mt in the study area.  相似文献   

5.
Environmental monitoring of national-level comparisons of CO(2) emissions is needed to quantify sources and sinks of carbon (C) in national ecosystems. In this study, a national forest inventory database was used to estimate the past and current pools and fluxes of C in deciduous and coniferous forest and woodland ecosystems (20.7 x 10(6) ha) of Turkey. Growing C stock was 12.63 t C ha(-1) in 1960 and 16.55 t C ha(-1) in 1995. Total C store in the whole live woody biomass was estimated at 22.77 t C ha(-1) in 1996. The total flux of C from the atmosphere into the forest and woodland ecosystems driven by primary productivity was about 1.46 t C ha(-1)(or 30.2 Mt C) in 1996. The estimated net release of C from the forest and woodland ecosystems of Turkey to the atmosphere was about 1.34 t C ha(-1)(or 21.5 Mt C) in 1996. When C released was taken into account, net ecosystem sequestration (NES) resulted in 0.12 t C ha(-1) per year. Such analytical tools as national forest C budgets are needed to improve our preventive and mitigative strategies for dealing with global climate change.  相似文献   

6.
New forest management and planning approaches are designed to optimize forest structure. Optimal forest structure was determined using newly established growth models while considering primary timber production objectives as well as non-timber objectives for inaccessible areas and social and political pressures on land management. With currently planned management the forests of the Ormanüstü Planning Unit (OPU) in the Black Sea region of northern Turkey are likely to become an important C sink. To quantify this potential C sink and understand its implication to the regional carbon budget and future forest management, we estimated the changes in the OPU between 1973 and 2006. Based on four periods of data for the OPU forests obtained from the Forest Management and Planning Office of Turkey, we used allometric biomass and C regression equations along with biomass expansion factors to estimate the forest biomass carbon pool for each of four inventory years 1973, 1984, 1997, and 2006. Since 1973, OPU forests have accumulated 110.2?×?103 tons of C as a result of forest expansion and the growth of extant forests, increasing by 50.8 % from 217?×?103 tons in 1973 to 327.2?×?103 tons C in 2006. Hardwood and softwood forests accounted for 44 and 56 % of carbon accumulation during this period, respectively. From 1973 through 2006, forest C accumulated at a rate of 3.3?×?103 tons C year?1. Carbon density of the OPU forests in the Black Sea region increased by 48.2 % from 5,679 to 8,419 tons/ha.  相似文献   

7.
Analyzing the spatial extent and distribution of forest fires is essential for sustainable forest resource management. There is no comprehensive data existing on forest fires on a regular basis in Biosphere Reserves of India. The present work have been carried out to locate and estimate the spatial extent of forest burnt areas using Resourcesat-1 data and fire frequency covering decadal fire events (2004–2013) in Similipal Biosphere Reserve. The anomalous quantity of forest burnt area was recorded during 2009 as 1,014.7 km2. There was inconsistency in the fire susceptibility across the different vegetation types. The spatial analysis of burnt area shows that an area of 34.2 % of dry deciduous forests, followed by tree savannah, shrub savannah, and grasslands affected by fires in 2013. The analysis based on decadal time scale satellite data reveals that an area of 2,175.9 km2 (59.6 % of total vegetation cover) has been affected by varied rate of frequency of forest fires. Fire density pattern indicates low count of burnt area patches in 2013 estimated at 1,017 and high count at 1,916 in 2004. An estimate of fire risk area over a decade identifies 12.2 km2 is experiencing an annual fire damage. Summing the fire frequency data across the grids (each 1 km2) indicates 1,211 (26 %) grids are having very high disturbance regimes due to repeated fires in all the 10 years, followed by 711 grids in 9 years and 418 in 8 years and 382 in 7 years. The spatial database offers excellent opportunities to understand the ecological impact of fires on biodiversity and is helpful in formulating conservation action plans.  相似文献   

8.
Robust monitoring of carbon sequestration by forests requires the use of multiple data sources analyzed at a common scale. To that end, model-based Moderate Resolution Imaging Spectroradiometer (MODIS) and field-based Forest Inventory and Analysis (FIA) data of net primary productivity (NPP) were compared at increasing levels of spatial aggregation across the eastern USA. A total of 52,167 FIA plots and colocated MODIS forest cover NPP pixels were analyzed using a hexagonal tiling system. A protocol was developed to assess the optimal scale as an optimal size of landscape patches at which to map spatially explicit estimates of MODIS and FIA NPP. The optimal mapping resolution (hereafter referred to as optimal scale) is determined using spatially scaled z-statistics as the tradeoff between increased spatial agreement as measured by Pearson’s correlation coefficient and decreased details of coverage as measured by the number of hexagons. Spatial sensitivity was also assessed using land cover assessment and forest homogeneity using spatially scaled z-statistics. Pearson correlations indicate that MODIS and FIA NPP are most highly correlated when using large hexagons, while z-statistics indicate an optimal scale at an intermediate hexagon size of 390 km2. This optimal scale had more spatial detail than was obtained for larger hexagons and greater spatial agreement than was obtained for smaller hexagons. The z-statistics for land cover assessment and forest homogeneity also indicated an optimal scale of 390 km2.  相似文献   

9.
Forests make up large ecosystems and can play an important role in mitigating the emissions of CO2, the most important greenhouse gas. However, they are sources of atmospheric carbon when they are disturbed by human or natural causes. Storage of carbon through expansion and adaptive management of forest ecosystems can assist in reducing carbon concentrations in atmosphere. This study proposes a methodology to produce spatially explicit estimates of the carbon storages (aboveground plus belowground) depending on land use/cover changes in two different forest ecosystems during various periods. Carbon storages for each forest ecosystem were projected according to inventory data, and carbon storages were mapped in a geographic information system (GIS). Results showed that total carbon stored in above and belowground of both forest ecosystems increased from one period to other because of especially increase of productive forest areas and decline of degraded forest areas as well as protection of spruce forests subject to insect attacks.  相似文献   

10.
CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from ??341 to 1,193 mg m???2 h???1, and the mean value over all three forests and sampling times was 286 mg m???2 h???1. CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.  相似文献   

11.
Spatially explicit approach is essential to prioritise the ecosystems for biodiversity conservation. In the present study, the conservation status of 20 protected areas of the Western Ghats of Kerala, India, was analysed based on long-term changes in forests (1975–1985–1995–2005–2013), landscape level changes in fragmentation and forest fires (2005–2015). This study has shown that a significant forest loss occurred in protected areas before declaration. Idukki is one of the major protected areas which showed a drastic reduction (18.83%) in its forest cover. During 1985–1995, Periyar tiger reserve had lost 24.19 km2 core 3 forest area followed by Peppara (18.54 km2), Parambikulam (17.93 km2), Chimmony (17.71 km2), Peechi-Vazhani (12.31 km2) and Neyyar (11.67 km2). An area of 71.33 km2 of the protected area was affected by fires in 2014. Overall protected area-wise decadal analysis indicates Periyar has the highest number of fire incidences followed by Wayanad, Kurinjimala, Silent Valley and Eravikulam. Disturbances in the form of fires and fragmentation still exist and may have significant conservation threat to flora and fauna. Among protected areas, many are having a probability to go under threat or dynamic stage. Chinnar, Thattekkad and Kurinjimala sanctuaries are representing high levels of vulnerability, or they are near to decline stage. Habitat level monitoring of the anthropogenic disturbances can be efficiently useful for the strategic conservation planning. The present study has provided geospatial database on spatial patterns of deforestation, fragmentation and forest fires in protected areas of Kerala. Conservation prioritization approach based on these parameters will be useful for the strategic planning in the state of Kerala.  相似文献   

12.
In order to assess the effects of conversion of natural stands into plantations, soil invertebrate micro- and macroarthropod communities were evaluated for their abundance and richness in a sessile oak (SO; Quercus petraea L.) stand and adjacent Austrian pine (AP; Pinus nigra Arnold) plantation. Sites were sampled four times a year in 3-month intervals from May 2009 to February 2010. Humus characteristics such as total mass; carbon, lignin, and cellulose contents; and C/N ratio were significantly different between SO and AP. Statistically significant differences were detected on soil pH, carbon and nitrogen contents, and electrical conductivity between the two sites. The number of microarthropods was higher in AP than in the SO site. The annual mean abundance values of microarthropods in a square meter were 67,763 in AP and 50,542 in SO, and the annual mean abundance values of macroarthropods were 921 m?2 in AP and 427 m?2 in SO. Among the soil microarthropods, Acari and Collembola were the dominant groups. Shannon’s diversity index was more affected by evenness than species number despite the species diversity (H′) of soil arthropods being generally higher in the SO stand. The abundance of microarthropods showed clear seasonal trends depending upon the humidity of the soil.  相似文献   

13.
Methane emissions from natural wetlands   总被引:3,自引:0,他引:3  
Methane is considered one of the most important greenhouse gases in the atmosphere. Because of the strict anaerobic conditions required by CH4-generating microorganisms, natural wetland ecosystems are one of the main sources of biogenic CH4. The total natural wetland area is estimated to be 5.3 to 5.7 × 1012 m2, making up less than 5% of the Earth's land surface. However, natural wetland plays a disproportionately large role in CH4 emissions. Wetlands are likely the largest natural sources of CH4 to the atmosphere, accounting for about 20% of the current global annual emission. Out of the total amount of CH4 emitted, northern wetlands contribute 34%, temperate wetlands 5%, and tropical systems about 60%.Because of the unique characteristics and high productivity, wetland ecosystems are important in the global carbon cycle. Natural wetlands are permanently or temporarily saturated. Strict anaerobic conditions consequently develop, which allows methanogenesis to occur. But the thin oxic layer and the oxic plant rhizophere promote activity of CH4-oxidizing bacteria or methanotrophs. Thus, both CH4 formation and consumption in wetland systems are microbiological processes and are controlled by many factors. Eight of the controlling factors, including carbon supply, soil oxidation-reduction status, pH, temperature, vegetation, salinity and sulfate content, soil hydrological conditions and CH4 oxidation are discussed in this paper.  相似文献   

14.
15.
Vegetation, environmental characteristics, and forest productivity were studied in the boreal forest in the North Klondike River Valley, Yukon Territory, Canada. The concept and approach of biogeoclimatic ecosystem classification were followed. For the treed vegetation, five ecosystem types were distinguished based on vegetation structure and physical and chemical properties of soils. They were: 1) spruce-lichen type, 2) spruce-moss type, 3) spruce-Equisetum type, 4) spruce-willow type, and 5) bog forest type. These types were differentiated mainly by moisture regime and base status of soils. The sequence of the ecosystem types reflected their topographical position from slope summit to valley bottom. The spruce-lichen type developed in the driest and nutritionally impoverished habitats, the spruce-Equisetum type occurred in moist and nutritionally enriched sites, and the spruce-moss type was found in between them. The bog forest type occurred where peat had accumulated sufficiently to generate ombrotrophic conditions in habitats of high water table underlain with permafrost. The spruce-willow type developed along small creeks where substrates were very coarse. Tree growth characteristics were measured, except for the bog forest type that did not have trees over 5 m tall. Total volume of standing trees ranged from 29 to 582 m3/ha, with an overall mean of 216.9 m3/ha. The spruce-Equisetum type exhibited the highest figure, 413.5 m3/ha, while spruce-lichen type the lowest one, 87.7 m3/ha. Mean annual increment ranged from 0.15 to 2.66 m3/ha, with an overall mean of 1.10 m3/ha. A similar tendency was noted for all other forestry characteristics, i.e., the spruce-Equisetum type showed the highest productivity while the spruce-lichen type the lowest. This tendency was considered to be attributed to the availability of moisture and basic cations in soils.  相似文献   

16.
As part of the European Community Respiratory Health Survey (ECRHS) PM2.5 (particles collected with an upper 50% cut point of 2.5 μm aerodynamic diameter) was measured using an EPA-WINS (Environmetal Protection Agency Well Impactor Ninety-six) sampler. The monitoring schedule was restricted to 7 days per month for one year. Simultaneously, during this one year study period a collocated Harvard Impactor (HI) was run on a daily basis in Erfurt, Germany. Here we validated the reliability of annual, seasonal and monthly means estimated using the ECRHS scheme (measurements taken less than 25% of the whole study period) with the ‘true’ long-term averages, which were estimated using all available daily means.The daily PM2.5 means, obtained by both instruments operated in parallel, were only slightly different (the mean difference between EPA-WINS and HI was 1.8 μg m−3 and 2.8 μg m−3 for the winter means). The values obtained by the two instruments were highly correlated (r = 0.95).In view of that negligible difference, no additional bias was seen with respect to the annual and the winter means estimated by the two different sampling strategies (the difference was 1.7 μg m−3 and 2.7 μg m−3, respectively). Monthly means, however, can only be considered to be a crude estimate that may substantially under- or overestimate the true monthly mean value.  相似文献   

17.
A method of calculation of sulphur deposition values on forests subjectto long-term industrial influence is presented. Investigations wereconducted in the vicinities of nickel smelters of Kola peninsula. Sulphurdioxide (SO2) is the major phytotoxicant emitted by theseenterprises. Depositions of sulphur were calculated on the basis of ground air layer pollution. To determine it a mathematical model was applied.Field surveys of forest ecosystems response to air contamination werecarried out and areas of different forest damage degree were identified.More than 4300 km2 of the territory of Kola peninsula isunder the impact of nickel enterprises. Average SO2concentration over the area of slight damage to forests is about 20µg/m3. It corresponds to the critical level proposed for forest ecosystems (UN ECE, 1993). Sulphur deposition over thearea of slight damage varies from 0.6 to 1.0 g/m2yr-1 for coniferous forests. For deciduous forests it isabout 1.0 g/m2 yr-1. These values are close totarget loads for highly sensitive ecosystems (Nilsson et al., 1991), but they exceed critical loads for the northern regions of Europe (Downing etal., 1993).  相似文献   

18.
Abstact Aboveground biomass, aboveground litterfall, and leaf litter decomposition of five indigenous tree stands (pure stands ofPinus brutia,Pinus nigra,Cedrus libani,Juniperus excelsa, and a mixed stand ofAbies cilicica,P. nigra, andC. libani) were measured in an eastern Mediterranean evergreen needleleaf forest of Turkey. Measurements were converted to regional scale estimates of carbon (C) stocks and fluxes of forest ecosystems, based on general non-site-specific allometric relationships. Mean C stock of the conifer forests was estimated as 97.8± 79 Mg C ha−1consisting of 83.0 ± 67 Mg C ha−1in the aboveground and 14.8 ± 12 Mg C ha−1in the belowground biomass. The forest stands had mean soil organic carbon (SOC) and nitrogen (SON) stocks of 172.0 ± 25.7 Mg C ha−1and 9.2 ± 1.2 Mg N ha−1, respectively. Mean total monthly litterfall was 376.2± 191.3 kg C ha−1, ranging from 641 ± 385 kg C ha−1forPinus brutiato 286 ± 82 kg C ha−1forCedrus libani. Decomposition rate constants (k) for pine needles were 0.0016 forCedrus libani, 0.0009 forPinus nigra, 0.0006 for the mixed stand, and 0.0005 day−1forPinus brutiaand Juniperus excelsa. Estimation of components of the C budgets revealed that the forest ecosystems were net C sinks, with a mean sequestration rate of 2.0 ± 1.1 Mg C ha−1 yr−1ranging from 3.2 ± 2 Mg C ha−1forPinus brutiato 1.6 ± 0.6 Mg C ha−1forCedrus libani. Mean net ecosystem productivity (NEP) resulted in sequestration of 98.4 ± 54.1 Gg CO2 yr−1from the atmosphere when extrapolated for the entire study area of 134.2 km2(Gg = 109 g). The quantitative C data from the study revealed the significance of the conifer Mediterranean forests as C sinks  相似文献   

19.
Tropical forests are well known to have great species diversity and contribute substantial share in terrestrial carbon (C) stocks worldwide. Shrubs are long-neglected life form in the forest ecosystem, playing many roles in the forest and human life. Shrub has great impact on vegetation attributes which in turn modify the C storage and capture. In the present investigation, an attempt has been made to explore the dynamics of shrub species in four fire regimes, viz. high, medium, low, and no fire zones of Bhoramdeo Wildlife Sanctuary of Kawardha forest division (Chhattisgarh), India. The variations in structure, diversity, biomass, productivity, and C sequestration potential in all the sites were quantified. The density and basal area of shrub varied from 1250 to 3750 individuals ha?1 and 2.79 to 4.92 m2 ha?1, respectively. The diversity indices showed that the value of Shannon index was highest in medium fire zone (3.77) followed by high, low, and no fire zones as 3.25, 3.12, and 2.32, respectively. The value of Simpson’s index or concentration of dominance (Cd) ranged from 0.08 to 0.20, species richness from 0.56 to 1.58, equitability from 1.41 to 1.44, and beta diversity from 1.50 to 4.20, respectively. The total biomass and C storage ranged from 6.82 to 15.71 and from 2.93 to 6.76 t ha?1, respectively. The shrub density, importance value index (IVI), and abundance to frequency ratio (A/F) significantly correlated between high fire and medium fire zone. The basal area was found to be significantly positively correlated between high fire and medium fire, and low and no fire zones, respectively. Two-way cluster analysis reflected various patterns of clustering due to influence of the forest fire which showed that some species have distant clustering while some have smaller cluster. Principal component analysis (PCA) reflects variable scenario with respect to shrub layer. Ventilago calyculata and Zizyphus rotundifolia showed higher correlation between themselves in terms of basal area (BA). The total shrub production was 1.59–3.53 t ha?1 year?1 while the C sequestration potential of 0.71–1.57 t ha?1 year?1 under different fire regimes. Shrub community in the medium fire zone reflected higher productivity and higher C sequestration in comparison to other fire zone. Among the different plant parts, the biomass accumulation ratio was highest in the root of shrub community among various fire regimes. Screening of species for restoration and different land-use pattern on the basis of biomass accumulation and carbon sequestering potential would be an effective strategy for decision-making in sustainable forest management.  相似文献   

20.
One of the most important databases needed for estimating emissions of carbon dioxide resulting from changes in the cover, use, and management of tropical forests is the total quantity of biomass per unit area, referred to as biomass density. Forest inventories have been shown to be valuable sources of data for estimating biomass density, but inventories for the tropics are few in number and their quality is poor. This lack of reliable data has been overcome by use of a promising approach that produces geographically referenced estimates by modeling in a geographic information system (GIS). This approach has been used to produce geographically referenced, spatial distributions of potential and actual (circa 1980) aboveground biomass density of all forests types in tropical Africa. Potential and actual biomass density estimates ranged from 33 to 412 Mg ha–1 (106g ha–1) and 20 to 299 Mg ha–1, respectively, for very dry lowland to moist lowland forests and from 78 to 197 Mg ha–1 and 37 to 105 Mg ha–1, respectively, for montane-seasonal to montane-moist forests. Of the 37 countries included in this study, more than half (51%) contained forests that had less than 60% of their potential biomass. Actual biomass density for forest vegetation was lowest in Botswana, Niger, Somalia, and Zimbabwe (about 10 to 15 Mg ha–1). Highest estimates for actual biomass density were found in Congo, Equatorial Guinea, Gabon, and Liberia (305 to 344 Mg ha–1). Results from this research effort can contribute to reducing uncertainty in the inventory of country-level emission by providing consistent estimates of biomass density at subnational scales that can be used with other similarly scaled databases on change in land cover and use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号