首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
ABSTRACT: Analysis of the storage-yield relationship can be used to help resolve conflicts between environmental values and water resources development. New Melones Reservoir in northern California presents a classic example of such a conflict between preservation of white water for recreational purposes and development of the site for a major multi-purpose reservoir. Analysis of the storage yield relationship for the proposed New Melones project indicates potential trade-offs between white water preservation and reservoir yield.  相似文献   

3.
    
The purpose of this study was to identify attitudes toward the recreational use of drinking water reservoirs in Massachusetts among municipal water supply managers in the state. Compared to the findings of recent studies assessing the attitudes of the general public, water officials were found to advocate highly restrictive views. No officials said that recreation was an insignificant source of water supply pollution; however, opinions were not found to be related to respondents' exposure to the literature on the topic. The majority were not, in fact, familiar with the literature assessing the impact of recreation on water supply reservoirs.  相似文献   

4.
ABSTRACT: Major water rights adjudications involving the Little Colorado River Basin and Gila River Basin are presently underway within Arizona. Water resource managers are faced with the prospect of evaluating and regulating tens of thousands of water diversions and uses. Stockponds comprise a large percentage of the total number of water diversions within these basins. Water balance studies conducted on the Little Colorado River watershed above Lyman Lake and on the Gila River watershed above Solomon, Arizona, indicate that the impact of stockponds on the water available to downstream users is insignificant when compared to total watershed production. Considering that there are an estimated 25,000 stockponds in the Gila River basin alone, rigorous case-by-case investigations and stringent regulation of individual stockponds may be impractical and unwarranted. Therefore, stock-pond claims within the context of the general adjudication process may be effectively handled by partial summary judgment, thereby allowing the court to concentrate on major water users and water rights issues.  相似文献   

5.
ABSTRACT: Evaluation of hydrologic methodology used in a number of water balance studies of lakes in the United States shows that most of these studies calculate one or more terms of the budget as the residual. A literature review was made of studies in which the primary purpose was error analysis of hydrologic measurement and interpretation. Estimates of precipitation can have a wide range of error, depending on the gage placement, gage spacing, and areal averaging technique. Errors in measurement of individual storms can be as high as 75 percent. Errors in short term averages are commonly in the 15-30 percent range, but decrease to about 5 percent or less for annual estimates. Errors in estimates of evaporation can also vary widely depending on instrumentation and methodology. The energy budget is the most accurate method of calculating evaporation; errors are in the 10–15 percent range. If pans are used that are located a distance from the lake of interest, errors can be considerable. Annual pan-to-lake coefficients should not be used for monthly estimates of evaporation because they differ from the commonly used coefficient of 0.7 by more than 100 percent. Errors in estimates of stream discharge are often considered to be within 5 percent. If the measuring section, type of flow profile, and other considerations, such as stage discharge relationship, are less than ideal errors in estimates of stream discharge can be considerably greater than 5 percent. Errors in estimating overland (nonchannelized) flow have not been evaluated, and in most lake studies this component is not mentioned. Comparison of several lake water balances in which the risdual consists solely of errors in measurement, shows that such a residual, if interpreted as ground water, can differ from an independent estimate of ground water by more than 100 percent.  相似文献   

6.
ABSTRACT: A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wet. land density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.  相似文献   

7.
本文引入几种统计模型探讨“气候变暖”对水资源的影响。这些模型经实测资料验证,模拟和预测效果了。在一定环境条件下,利用它们预估“气候变暖”对雅砻江未来水资源的影响,获得令人满意的成果。  相似文献   

8.
ABSTRACT: Society has many objectives, many of which are not commensurable. This incommensurability problem is generally referred to as the multiple objective problem and leads to the notion of tradeoffs. Various approaches to calculating tradeoffs in water resource development have been advocated by several authors. Many have made errors in the context of the conceptural model presented in this paper. It is argued the correct framework for tradeoff analysis is the neoclassical economic model. The relevant tradeoffs, then, are really price ratios. These, in turn, must be calculated in such a manner as to allow comparison of product mixes where the expenditure on resources is the same. This is where several authors have erred. An empirical example which illustrates the correct application of the model is presented.  相似文献   

9.
    
ABSTRACT: A methodology to estimate the average monthly lake evaporation, E(τ), (month τ=1,12) for fresh water bodies located in the northeast United States is presented. The approach combines analysis of at‐site, lake‐specific vertical water temperature profile data and a previously developed regional air temperature based model approximation of the widely accepted modified Penman energy budget estimate of mean monthly potential evaporation, Ep(τ) (mm/day). The paper presents procedures to develop site‐specific estimates of Ep(τ) and to convert water temperature data to average monthly conductive heat flux, G(τ). With monthly estimates of G(τ), the average monthly potential evaporation, Ep(τ), is then convertible to estimates of the average monthly lake evaporation, E(τ). This new method permits a good estimate of site‐specific lake evaporation rates without the data and computational requirements of the Penman energy budget procedure nor the comparatively expensive, time consuming field eddy correlation approach.  相似文献   

10.
    
ABSTRACT: Mass balance models have been common tools in lake quality management for some years. However, verification for use on reservoirs, especially in the Western United States, has been seriously lacking, In this study, such a verification is attempted using data from the U.S EPA National Eutrophication Survey. Several models from the literature are compared for accuracy in application to the western reservoir data. Model standard error and correlation between estimated and observed reservoir phosphorus concentrations are the Criteria used for comparison. Standard errors am further used to calculate uncertainty of trophic state classification based on estimated phosphorus concentration. The model proposed by Dillon and Rigler (1974) proved most accurate, with a correlation coefficient of 0.86 and standard error of 0.2, based on logarithmic transformed values. Deficiencies in the other models appear to & from coefficients fit to lake data and from inappropriate model formulation.  相似文献   

11.
    
Droughts constitute one of the most important factors affecting the design and operation of water resources infrastructure. Hydrologists ascertain their duration, severity, and pattern of recurrence from instrumental records of precipitation or stream‐flow. Under suitable conditions, and with proper analysis, tree rings obtained from long living, climate sensitive species of trees can extend instrumental records of streamflow and precipitation over periods spanning several centuries. Those tree‐ring “reconstructions” provide a valuable insight about climate variability and drought occurrence in the Holocene, and yield long term hydrological data useful in the design of water infrastructure. This work presents a derivation of drought risk based on a renewal model of drought recurrence, a brief review of the basic theory of tree‐ring reconstructions, and a stochastic model for optimizing the design of water supply reservoirs. Examples illustrate the methodology developed in this work and the supporting role that tree‐ring reconstructed streamflow can play in characterizing hydrologic variability.  相似文献   

12.
长庆油气区大部分地处失陷性黄土地区,其区域特性、降雨特点及地面集流方式易产生水土流失、滑坡、泥石流等自然灾害。通过采用道路型雨水收集和分类区别处理技术对站场设计优化,将站场雨水、废水收集回收利用从而减少外排,既减少排水引起的自然灾害和后期维护费用,又可满足站场绿化用水,节约水资源。经过设计应用初步形成了适应于长庆油气区实际的站场水环境治理与绿化设计模式,为后期新建油气田的治理提供新思路和方法。  相似文献   

13.
Alternative futures are defined to be mutually consistent alternative combinations of assumed sets of future conditions. Alternative futures are employed in conjunction with the Wollman-Bonem model to project future water use. The model solutions under different alternative futures provide an indication of the direction and relative magnitude of changes in water use, both in quantity and quality, that may result from changes in policy-influenced variables, technology, and other data. The Wollman-Bonem model is employed in this paper as a tool to illustrate the alternative futures concept. The model can best be cast as an economic model. The model solutions are not given as a set of formal projections, but as various possible water-use-over-time curves. This should aid in disspelling the erroneous idea that it is possible to make distant projections of water use as a single curve. Multiple curves suggest that water use is really a function of many variables.  相似文献   

14.
ABSTRACT: In estimating the costs of a reservoir project, it is difficult to produce accurate costs without performing a detailed design and quantity takeoff. The computerized procedure presented in this article provides a method for determining these planning level costs quickly and easily, while maintaining reasonable accuracy.  相似文献   

15.
ABSTRACT: Three processes were examined as causing snowpack changes in forest clearings. Two of the three contribute to increases and one counteracts by reducing snowpack. The two that increase snowpack are redistribution and decreased loss to interception. Snow evaporation from a clearing counteracts snowpack increases. Research has indicated that as vegetation density increases, so too does the loss to interception. As snow in the canopy reaches the limit that the canopy can hold (the threshold amount) evaporation increases. Aerodynamics of the forest canopy were studied as well. As timber is cut, wind patterns are disturbed, creating disruptions in the wind velocity gradient depositing snow in openings. This redistribution leads to an increased snow water equivalent and augments runoff. Snow evaporation was shown to increase proportionally with opening size. Evaporation offsets the water yield gains derived from forest cut. It was found that this offset is inclusive to the measurements of water yield changes in experimental forests. An optimal size of harvest block may be five tree heights in width as suggested by numerous studies.  相似文献   

16.
Analysis of recent streamflow data from the Fox Creek Experimental Watersheds in the Bull Run Municipal Watershed, Oregon, indicates a significant recovery from the impacts on summer water yield due to a loss of fog drip upon timber harvesting. Measurable impacts and their associated recovery are notable only during the months of June and July. Recovery begins about five or six years following harvest, possibly due to renewed fog drip from prolific revegetation. Watershed positioning with respect to prevailing weather systems and the extent of burning or removal of slash and residual vegetation during logging appear to be important factors in predicting the impact of fog drip reduction associated with planned harvest. Apparently, once the temporary reduction in summer yield is offset by renewed fog drip, the expected increase in yield due to decreased evapotranspiration can be observed. Redistribution of fog drip may be a major factor in the measurements of local interception and water yield.  相似文献   

17.
ABSTRACT: Techniques employed to simulate infiltration and subsurface ground-water flow were examined for a number of available watershed models. The large number of processes that these models simulate prohibits detailed analysis of subsurface flow, due to excessive computer and data requirements. Such models emphasize surface flow and include only that portion of water lost to the subsurface and the portion returned to the stream as baseflow. Problems were examined in adopting conjunctive use models, which allow the coordinated exploitation and management of both surface and ground-water resources. The application of conjunctive use models in water resources management is expected to increase dramatically over the next decade.  相似文献   

18.
ABSTRACT: Current water quality policies in California require disposal of saline blowdown waters from power plants in sealed evaporation ponds to avoid degradation of ground waters. This policy highlights the conflict between increased energy demands, increasing scarcity of water, and environmental priorities. Saline blowdown waters can be used for the irrigation of salt tolerant crops, albeit with some reduction in yields. The results of experiments intended to specify these yield reductions are reported. If such irrigation is carefully managed, the soil profile can be used to store residual salts and ground water degradation will be avoided, provided that irrigation ceases before the salts are leached to the ground water. An analysis of discharge below a carefully managed irrigation project shows that the downward movement of salts below the root zone is no worse than with conventional methods of disposal. Thus, irrigation reuse with blowdown water is shown to be a viable means of saline water disposal while maintaining existing standards of ground water quality protection. Further analysis demonstrates the economic feasibility of such irrigation reuse by showing that it is significantly less costly than the evaporation pond alternative.  相似文献   

19.
本文论述了雨水资源和目前世界各地雨水利用的概况,提出了家庭用水和农业用水雨水资源评价的计算方法。  相似文献   

20.
Abstract: To combat its growing ecological problems, China has implemented a large‐scale Natural Forest Protection Program (NFPP). Under the umbrella of this program, the Sloping Land Conversion Program (SLCP) was established in 1999 to return cultivated land with slopes of 25° or more to perennial vegetation. However, the regional impacts on water resource management that are incurred by afforestation have not been carefully evaluated, especially in the subalpine region of southwestern China. The purpose of the present study was to provide reference values for the SLCP by evaluating the potential impact of afforestation on water yield under different climatic regimes. Accordingly, evapotranspiration (ET) in cropland (CL), shrubland, and general forest was calculated using a modification of Thornthwaite’s method, and in coniferous forest, broad‐leaved forest (BF), and mixed coniferous and broad‐leaved forest (MF) using the Surface Energy Balance Algorithm for Land (SEBAL) model. The results of both approaches showed that afforestation reduces water yield by 9.6‐24.3% depending on the types of conversion and climatic conditions. Water‐yield reduction is greatest (>143.4 mm, or 24.3%) when CL is converted to BF in dry climate conditions. Compared with the other forest types studied, coniferous plantations prevented water‐yield reduction by as much as 9.6% because of their relatively low levels of ET. It is expected that implementation of the SLCP, together with continuing climate change, will further pressure regional water resources. Thus, the effectiveness of afforestation must be evaluated in a broader context while taking into account its positive ecological aspects, such as soil‐erosion control, the preservation of biodiversity, and the significant carbon sequestration provided by forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号