首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
采用单室无膜悬浮阴极微生物燃料电池(MFC),对比分析了不同处理方式的污泥(直接污泥、微波预处理污泥和酶强化水解污泥)为燃料时MFC产电特性、污泥减量化效果和能源效率.研究表明,酶强化污泥为燃料的MFC(ESMFC)产电周期最长(41d),功率密度最大(775.21mW/m2),但库仑效率(CE)仅10.58%.采用微波污泥为燃料的MFC(MSMFC)CE最高(84.6%),而产电周期(30d)和功率密度(343.41mW/m2)居中.采用直接污泥为燃料的MFC(SMFC)产电周期(15d)、功率密度(294.53mW/m2)和CE(5.8%)均最小.采用直接污泥为燃料的MFC中TCOD去除率为26.2%,VSS去除率为32.5%.采用污泥预处理手段有利于促进污泥减量化,MSMFC和ESMFC中TCOD去除率分别增加到58.5%和63.2%,VSS去除率分别增加到73.9%和77.1%.  相似文献   

2.
外加酶强化剩余污泥微生物燃料电池产电特性的研究   总被引:3,自引:1,他引:3  
以剩余污泥作为接种液和基质,探讨了外加酶(中性蛋白酶、α-淀粉酶)强化单室型剩余污泥微生物燃料电池产电效率的可行性,研究了酶投加量对微生物燃料电池的产电特性及剩余污泥减量的影响.结果表明,在相同条件下,实验组产生的最大功率密度远远高于对照组;当酶的总投加量为10 mg.g-1时,最大输出功率密度及污泥水解效率达到最大,即中性蛋白酶组的最大功率密度、库仑效率、TCOD去除率、TSS去除率、VSS去除率分别为507 mW.m-2、3.98%、88.31%、83.18%、89.03%,而α-淀粉酶组则分别为700 mW.m-2、5.11%、94.09%、98.02%、98.80%.本实验采用向剩余污泥中投加酶的方法,成功增强了微生物燃料电池的产电效率,同时对剩余污泥有效地进行了处理,为微生物燃料电池的实际应用提供了新途径.  相似文献   

3.
剩余污泥为燃料的微生物燃料电池产电特性研究   总被引:11,自引:2,他引:9  
利用厌氧污泥作为接种体在不加入任何营养元素的条件下,经过20 d成功地启动了单室无膜微生物燃料电池.启动成功后对剩余污泥作为燃料产电特性以及底物的变化进行了研究.结果表明,微生物燃料电池产生的最大电压为495 mV(外电阻为1 000 Ω),最大功率密度达到44 mW·m-2,稳定期间内阻约为300 Ω.在1个运行周期中,污泥SS和VSS的去除率分别为27.3%和28.7%,pH值的变化范围为6.5~8.0, COD的起始浓度为617 mg·L-1,浓度随时间的增加而增大并稳定在1 150 mg·L-1左右,随后逐渐下降,糖的起始浓度为47 mg·L-1,逐渐增大到60 mg·L-1之后浓度逐渐下降.微生物燃料电池可以将剩余污泥中的化学能转化为最清洁的电能,为污泥资源化提供了新的思路.  相似文献   

4.
以剩余污泥为接种液和基质,探讨了添加生物表面活性剂(鼠李糖脂/TSS,0.3 g·g-1)对单室剩余污泥微生物燃料电池(SSMFC)产电特性及剩余污泥减量化的影响.结果表明,在一个运行周期中,对照组的产电周期为20 d,最大功率密度为236.8 mW·m-2,库仑效率为5.7%,TCOD去除率为28.6%,TSS去除率为28.9%,VSS去除率为33.4%,而实验组产电周期达到35 d,库伦效率为11.8%,最大输出功率密度为516.7 mW·m-2,较对照组增加了118.2%,TCOD、TSS、VSS去除率分别为58.5%、56.7%和66.3%,较对照组分别提高了104.5%、96.2%和98.5%.随着系统的运行,对照组和实验组系统输出电压均是先稳定一段时间后逐渐降低,污泥中SCOD、蛋白质和溶解性糖浓度均呈先上升再下降趋势.采用向剩余污泥中投加鼠李糖脂的方法可以增强SSMFC的产电效率,同时能显著增强剩余污泥减量化效果.  相似文献   

5.
碳纳米管阳极微生物燃料电池产电特性的研究   总被引:3,自引:0,他引:3  
考察了以碳纳米管(carbon nanotube,CN)、活性炭(activated carbon,AC)和柔性石墨(flexible graphite,FG)为阳极材料的3种微生物燃料电池(CN-MFC、AC-MFC和FG-MFC)的产电性能,其最大产电功率密度分别为402、354和274 mW/m2,CN-MFC产电功率密度和库仑效率均高于AC-MFC和FG-MFC.CN-MFC、AC-MFC和FG-MFC的内阻分别为263、301和381 Q,以碳纳米管为阳极材料町以有效降低MFC的阳极内阻.稳定运行后3种MFC阳极蛋白质含量分别为149、132和92 ug/cm2,阳极上蛋白质含量与阳极内阻呈负相关.碳纳米管和活性炭粉作为阳极的MFC表面累计孔体积均高于柔性石墨阳极.3种阳极材料中柔性石墨的导电性最好,其次为碳纳米管.活性炭最低,与阳极内阻高低次序一致.测量CN.MFC、AC.MFC和FG-MFC内阻所需的稳定时间分别为1 800、1 200和300 S.  相似文献   

6.
填料型微生物燃料电池产电特性的研究   总被引:6,自引:0,他引:6  
将石墨和碳毡作为阳极填料组装成填料型微生物燃料电池,其启动期在1 d左右,低于平板型微生物燃料电池的启动期.碳毡作为填料时,微生物燃料电池的最大产电功率密度为1 502 mW/m2(37.6 W/m3),优于石墨作为填料的MFC.将碳毡与碳纸烧结一体以提高填料型微生物燃料电池阳极的导电性,与平板型微生物燃料电池相比,其面积内阻从0.071 Ω穖2下降到0.051 Ω穖2,最大电流密度从3 000 mA上升到8 000 mA,最大产电功率密度从1 100 mW/m2(27.5 W/m3)上升到2426 mW/m2(60.7W/m3),阳极电势平均下降100 mV.循环流量影响填料型微生物燃料电池的产电能力,当流量低于1 mL/min时,其产电功率密度随流速降低而下降.填料型微生物燃料电池在外电阻为600 Ω下长期稳定运行30 d以上,其库仑效率约为10.6%.  相似文献   

7.
2种不同结构的微生物燃料电池的产电性能比较   总被引:4,自引:1,他引:4  
微生物燃料电池(microbial fuel cell,MFC)目前仍面临着产能低和成本高的问题,因此系统比较同样条件下不同结构MFC的产电性能对于最终提高其产电效率具有重要意义.通过构建2种不同结构的MFC反应器:单室型MFC和双室型MFC,以乙酸为燃料,固定外电阻为1 000 Ω,对其产电性能进行了比较研究.结果表明,单室型MFC和双室型MFC均可稳定地输出电能,平均最大输出电压分别为600 mV和650 mV,平均运行周期分别为110 h和90 h;单室型MFC和双室型MFC的最大面积功率密度分别为113.8 mW/m2和382.4 mW/m2,最大体积功率密度分别为1.3 mW/m3和2.2 mW/m3;根据稳态放电法确定双室型MFC的内阻为188 Ω,单室型MFC的内阻为348 Ω,双室型MFC的产电性能及运行稳定性均优于单室型MFC.阳极的面积和质子通道的大小都会对MFC的库仑效率产生影响.  相似文献   

8.
构建了一种基于升流式厌氧污泥床反应器(UASB)的微生物燃料电池(MFCs),利用UASB高效去除COD能力及连续进样方式,获得稳定电能输出。考察了水力停留时间、进液方式、电极材料、离子交换膜种类、溶液离子强度等因素对于MFCs性能的影响。实验结果表明:在水力停留时间6h、连续进液、高纯石墨板电极以及均相阳离子交换膜条件下,连续运行3个月,放电功率稳定在145mW/m^2,开路电压0.78V,放电电流最高可达321mA/m^2。  相似文献   

9.
单室型微生物燃料电池处理黄姜废水的性能研究   总被引:4,自引:3,他引:1  
王超  薛安  赵华章  张宝刚  倪晋仁 《环境科学》2009,30(10):3093-3098
以黄姜废水为底物,采用单室型微生物燃料电池,验证了MFC处理黄姜废水的可行性,研究了进水COD和SO42-浓度对产电性能的影响.控制电导率和COD等条件一致,黄姜废水最大功率密度为葡萄糖配水的80.3%.低COD浓度条件下MFC产电稳定,功率密度随COD浓度上升而提高,最高为322 mW/m2;当COD提高至2766 mg/L以上时,MFC稳定产电的时长缩短且更新基质后无法恢复最佳产电水平,表明过高的COD负荷会抑制产电微生物活性.COD最终去除率在68.2%~84.8%之间,且随着初始浓度的提高去除率有所下降.进水SO42-浓度的提高使MFC输出功率密度增大,但当SO42-浓度>7 716 mg/L(电导率>8.19 mS/cm)时,继续提高SO42-浓度无法使功率密度增大.与沉淀SO42-后的废水比较,含硫原水的最大功率密度平均下降14.5%,其库仑效率也随SO42-浓度提高明显下降,表明存在SO42-作为电子受体被还原,降低了MFC的效率.  相似文献   

10.
微生物燃料电池处理苯酚废水运行条件研究   总被引:7,自引:1,他引:7  
以传统厌氧消化(conventional anaerobic digestion,CAD)作对照,研究不同温度、底物浓度、盐桥管径以及有无接种微生物对微生物燃料电池(microbial fuel cell,MFC)处理苯酚废水性能的影响.实验结果表明,MFC技术可以在获得电能的同时,强化有机废水的生物处理过程,MFC能够在较低温度(15℃)下运行.当苯酚初始浓度为0.15g·L-1,随着温度(15℃、25℃、35℃)的增加,苯酚的降解效率和MFC的产电性能也随着提高;MFC具有耐有机负荷冲击能力,即使在高负荷苯酚初始浓度3.5g·L-1条件下,去除率达60%;盐桥孔径并不与苯酚去除效率、电压、功率密度成正比关系.MFC在适合的管径条件下可以高效去除苯酚的同时,能有较高的产电效率;MFC的阳极反应需要微生物的催化.  相似文献   

11.
剩余污泥生物燃料电池输出功率密度的影响因素   总被引:5,自引:2,他引:5       下载免费PDF全文
对于以剩余污泥为燃料的微生物燃料电池(MFC),考察了可能影响输出功率密度的相关因素.结果表明,污泥体积对燃料电池以面积为单位的输出功率密度影响效果不明显.电池阳极面积越大,输出功率密度反而越小.采用NaCl为离子添加剂时,随着投加量的增加,输出功率密度相应增加,最大为173.40mW/m2;但采用K2HPO4为离子添加剂时,输出功率密度则先增加后降低,可能是磷浓度的增加影响了系统微生物的活性.泥水比1:2时,最大功率密度为163.35mW/m2,稀释比增加或减少,输出功率密度均相应降低.阴阳极距离从5cm缩小到0.5cm,输出功率密度从50.14mW/m2增加到84.02mW/m2,说明O2的扩散未对阳极厌氧微生物造成影响.采用最优条件时,输出功率密度为256.12mW/m2.  相似文献   

12.
“三合一”微生物燃料电池的产电特性研究   总被引:34,自引:0,他引:34  
曹效鑫  梁鹏  黄霞 《环境科学学报》2006,26(8):1252-1257
为了降低内阻,尽可能提高微生物燃料电池的输出功率,提出了一种将阳极、质子交换膜和阴极热压在一起的"三合一"膜电极形式的微生物燃料电池,并考察了其在接种厌氧污泥条件下对乙酸自配水的产电特性.该"三合一"电池在稳定运行条件下电池内阻约为10~30Ω,远低于现已报道的其它形式的微生物燃料电池的内阻.目前该"三合一"型微生物燃料电池最大输出功率密度约300 mW·m-2,库仑效率约50%.试验结果表明,在一个间歇运行周期中,电池内阻增加是引起输出电压降低的最主要原因.同时在不同的外阻条件下,需要降低极化的重点不同.  相似文献   

13.
反硝化微生物燃料电池的基础研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在启动双室型反硝化微生物燃料电池的基础上,研究了阴极溶解氧及外电阻对其产电性能和污染物去除效果的影响.结果表明,以乙酸钠为阳极电子供体,硝酸钠为阴极电子受体,在25℃的环境温度下,采用先间歇后连续培养的方式,42d内成功启动了反硝化微生物燃料电池.在阴极进水含氧的情况下,氧和硝酸盐可共同用作阴极电子受体.在较小电流密度区域内,氧是阴极的主要电子受体,相应的最大功率密度为26.0W/m3NC;电流密度增加到一定程度后,硝酸盐逐步变为阴极的主要电子受体,相应的最大功率密度为20.9W/m3NC.外阻变化对COD去除及反硝化程度影响较小,阳极COD去除负荷维持在1.2kg/(m3NC·d)左右,出水NO-2-N保持在0.05mg/L以下;但外阻减小有利于提高阴极脱氮效果,外阻为5 Ω时NO-3-N去除负荷达0.111kg/(m3NC·d).  相似文献   

14.
微生物燃料电池(MFC)芯片因具有体积小、运行条件温和、产电稳定等优点而有可能成为一种新型的野外水环境监测系统中传感器供能方式.但目前采用纯菌种及贵重金属阳极构建的MFC芯片,不仅成本较高且纯菌种在复杂环境条件下不易存活和保持稳定.因此,本文通过采用混合菌群接种,以活性炭为阳极,构建了阳极体积为50μL的MFC芯片,发现其稳定运行最大输出电流为3.5μA,平均运行周期为8.0 h,最大输出功率约为160 nW,最大功率密度为10.2 mW·m-2.EIS分析结果表明,MFC芯片的总内阻约为35.6 kΩ,其中,阴阳极内阻占主要部分.本研究制备的MFC芯片产电性能达到了同类采用纯菌株及Au作阳极的MFC芯片的性能,表明采用低成本材料为阳极,接种混合菌液的MFC芯片是完全可行的.  相似文献   

15.
针对现有的污泥热值分析方法所需仪器复杂、检测步骤繁琐、耗时长等问题,开发了一种基于微生物燃料电池(MFC)的污泥热值检测系统,考察了该系统用于污泥热值检测的可行性.结果表明,以污泥为底物的MFC运行良好,在最佳外阻(300Ω)下可以得到较高的输出功率.MFC可在较短的时间内(2~14h)完成启动,并在最大电流下持续稳定运行56h以上.污泥热值与MFC的产电电流呈现良好的线性相关性,由此确定出估算污泥热值的计算公式,可以准确估算污泥热值.  相似文献   

16.
The effect of pre-treatment of dewatered sludge using different nitrite concentrations and pH for microbial fuel cell (MFC) application was investigated. The results show that the addition of nitrite was feasible to increase the solubilization rate of the sludge and may reduce mass transfer limitation at the anode. This helped the MFC to reach higher voltage and to generate more power. The higher free nitrous acid (FNA) concentration under the acidic condition helped to increase sludge solubilization. However, under an alkaline condition, during which the FNA concentration was relatively low, the solubilization of the sludge was higher. The highest voltage and power density produced was 390?mV and 153?mW/m2, respectively, with the addition of nitrite at 100?mg-N/L and pH?9. Furthermore, it was found that elevated levels of FNA could inhibit electrogenic bacteria thus reducing power generation.  相似文献   

17.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

18.
采用剩余污泥厌氧发酵液为阳极燃料、铁氰化钾溶液为阴极电子受体,成功启动了双室微生物燃料电池(MFC).考察了厌氧发酵过程中剩余污泥上清液中各种挥发性脂肪酸(VFAs)含量的变化,研究分析了污泥厌氧发酵液燃料电池的产电过程、燃料消耗及电子供体. 结果表明,污泥厌氧发酵液中乙酸含量最高(约占总VFAs的50%),异戊酸和丙酸含量次之(分别约占总VFAs的18%及15%),正丁酸和异丁酸含量较少(均低于总VFAs的10%),正戊酸含量最低(低于总VFAs的1%);MFC实现了250h稳定电压输出(0.65±0.05V),库伦效率为9.09%;阳极总化学需氧量(TCOD)、溶解性化学需氧量(SCOD)、VFAs均呈现整体下降趋势, TCOD和SCOD的去除率分别为74.9%和86.4%; VFAs的完全消耗伴随着反应器产电性能迅速变差,表明VFAs是主要电子供体;在MFC产电过程中, VFAs的消耗与产生同时存在,消耗总体快于产生;各种VFAs消耗快慢依次为:乙酸>正丁酸>丙酸>正戊酸>异戊酸>异丁酸.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号