首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have found that Appalachian coal mining causes increased surface water salinity, and that benthic macroinvertebrate communities in salinized mining‐influenced streams differ from communities in streams draining unmined areas. Understanding the role of salinity in shaping these communities is challenging because such streams are often influenced by a variety of stressors in addition to salinity. We characterized associations of salinity with biotic condition while isolating salinity from other stressors through rigorous site selection. We used a multimetric index of biotic condition to characterize benthic macroinvertebrate communities in headwater streams in the Central Appalachian Ecoregion of Virginia across a gradient of sulfate‐dominated salinity. We found strong negative seasonal correlations between biotic condition and three salinity measures (specific conductance, total dissolved solids, and SO42? concentration). We found no evidence to suggest stressors other than salinity as significant influences on biotic condition in these streams. Our results confirm negative associations of salinity with benthic macroinvertebrate community condition, as observed in other studies. Thus, our findings demonstrate that elevated salinity is an important limiting factor for biological condition in Central Appalachian headwater streams.  相似文献   

2.
Inputs of nutrients (P and N) to freshwaters can cause excessive aquatic plant growth, depletion of oxygen, and deleterious changes in diversity of aquatic fauna. As part of a "National Agri-Environmental Standards Initiative," the Government of Canada committed to developing environmental thresholds for nutrients to protect ecological condition of agricultural streams. Analysis of data from >200 long-term monitoring stations across Canada and detailed ecological study at ~70 sites showed that agricultural land cover was associated with increased nutrient concentrations in streams and this, in turn, was associated with increased sestonic and benthic algal abundance, loss of sensitive benthic macroinvertebrate taxa, and an increase in benthic diatom taxa indicative of eutrophication. Chemical thresholds for N and P were defined by applying five approaches, employing either a predetermined percentile to a water chemistry data set or a relationship between water chemistry and land cover, to identify boundaries between minimally disturbed and impaired conditions. Comparison of these chemical thresholds with biological thresholds (derived from stressor-response relationships) produced an approach for rationalizing these two types of thresholds and deriving nutrient criteria. The resulting criteria were 0.01 to 0.03 mg L(-1) total P and 0.87-1.2 mg L(-1) total N for the Atlantic Maritime, 0.02 mg L(-1) total P and 0.21 mg L(-1) total N for the Montane Cordillera, ~0.03 mg L(-1) total P and ~1.1 mg L(-1) total N for the Mixedwood Plains, and ~0.10 mg L(-1) total P and 0.39-0.98 mg L(-1) total N for the interior prairies of Canada. Adoption of these criteria should result in greater likelihood of good ecological condition with respect to benthic algal abundance, diatom composition, and macroinvertebrate composition.  相似文献   

3.
4.
Excessive sedimentation in streams and rivers remains a pervasive problem for the protection of aquatic habitat and the sustainability of aquatic communities. Whereas water quality criteria have been determined for suspended sediments in many jurisdictions across North America, comparably little has been done for deposited (also known as bedded) sediments. Through Canada's National Agri-Environmental Standards Initiative, assessment techniques and analytical tools were developed for estimating environmental thresholds for deposited sediments in agricultural watersheds in New Brunswick (NB) and Prince Edward Island (PEI) in the Atlantic Maritimes of Canada. Physical thresholds were developed through assessment of geomorphic metrics, which were then analyzed using y-intercept and 25th percentile approaches. For NB, there was strong agreement in physical thresholds for both analytical approaches (e.g., percent fines <2 mm were 7.5 for y-intercept and 6.9 for 25th percentile approaches). In contrast, physical thresholds for PEI differed considerably between approaches (e.g., percent fines <2 mm were 6.1 for y-intercept and 19.6 for 25th percentile approaches), likely due to a narrower range in agricultural land cover. Cross-calibration of our provisional physical thresholds for NB with ecological (i.e., benthic macroinvertebrate) assessments show that ecological thresholds, calculated as change-points in relationships between Ephemeroptera-Plecoptera-Trichoptera relative abundance or Modified Family Biotic Index and geomorphic criteria, were more liberal than physical thresholds. These results suggest that provisional thresholds developed using geomorphic criteria should demarcate change from the least disturbed condition and reduce the risk of sedimentation degrading benthic ecosystems.  相似文献   

5.
This study examined the relative influence of nutrients (nitrogen and phosphorus) and habitat on algal biomass in five agricultural regions of the United States. Sites were selected to capture a range of nutrient conditions, with 136 sites distributed over five study areas. Samples were collected in either 2003 or 2004, and analyzed for nutrients (nitrogen and phosphorous) and algal biomass (chlorophyll a). Chlorophyll a was measured in three types of samples, fine-grained benthic material (CHLFG), coarse-grained stable substrate as in rock or wood (CHLCG), and water column (CHLS). Stream and riparian habitat were characterized at each site. TP ranged from 0.004–2.69 mg/l and TN from 0.15–21.5 mg/l, with TN concentrations highest in Nebraska and Indiana streams and TP highest in Nebraska. Benthic algal biomass ranged from 0.47–615 mg/m2, with higher values generally associated with coarse-grained substrate. Seston chlorophyll ranged from 0.2–73.1 μg/l, with highest concentrations in Nebraska. Regression models were developed to predict algal biomass as a function of TP and/or TN. Seven models were statistically significant, six for TP and one for TN; r 2 values ranged from 0.03 to 0.44. No significant regression models could be developed for the two study areas in the Midwest. Model performance increased when stream habitat variables were incorporated, with 12 significant models and an increase in the r 2 values (0.16–0.54). Water temperature and percent riparian canopy cover were the most important physical variables in the models. While models that predict algal chlorophyll a as a function of nutrients can be useful, model strength is commonly low due to the overriding influence of stream habitat. Results from our study are presented in context of a nutrient-algal biomass conceptual model.  相似文献   

6.
The influence of golf course operation on benthic macroinvertebrate communities in Precambrian Shield streams was evaluated using rapid bioassessment and the reference condition approach. Streams were sampled for water chemistry and invertebrates in 1999 and 2000, six on operational golf courses, and seven in forested reference locations. Correspondence analysis (CA) was used to determine the major patterns in the macroinvertebrate taxa, and canonical correspondence analysis (CCA) was used to evaluate relationships with environmental variables. The reference streams were used to define the normal range of variation for a variety of summary indices to evaluate the golf course streams. In all cases, golf course streams were higher in nutrients and dissolved ions and more alkaline than the forested reference streams. There was considerable variability in the macroinvertebrate fauna from the golf course streams, which was related to differences in golf course land management practices and to the potential influence of highway runoff. Of the management practices evaluated, fertilizer application rates in particular were important, as was the presence of ponds upstream on the course. Invertebrate taxa with higher abundances in golf course streams included Turbellaria, Isopoda, Amphipoda, Zygoptera, and Trombidiformes. Taxa more common in the reference streams included Ephemeroptera, Megaloptera, Culicidae, and Plecoptera. There were marked differences in the overall benthic macroinvertebrate community in three of the six golf course streams studied relative to the forested reference streams, suggesting that golf course land management on the Precambrian Shield can be associated with significant differences in macroinvertebrate community structure.  相似文献   

7.
Defining stream reference conditions is integral to providing benchmarks to ecological perturbation. We quantified channel geometry, hydrologic and environmental variables, and macroinvertebrates in 62 low‐gradient, SE United States (U.S.) Sand Hills (Level IV ecoregion) sand‐bed streams. To identify hydrogeomorphic reference condition (HGM), we clustered channel geometry deviation from expectations given watershed area (Aws), resulting in two HGM groups discriminated by area at the top of bank (Atob) residuals <0.6 m2 and >0.6 m2 predicted to be HGM reference/nonreference streams, respectively. Two independent partial least squares discriminate analyses used (1) hydrologic/environmental variables and (2) macroinvertebrate mean trait values (mT) on 10 reference/nonreference stream pairs of similar Aws for classification validation. Nonreference streams had flashier hydrographs and altered flow magnitudes, lower organic matter, coarser substrate, higher pH/specific conductivity compared with reference streams. Macroinvertebrate assemblages corresponded to HGM groupings, with mT indicative of multivoltinism, collector‐gatherer functional feeding groups, fast current‐preference taxa, and lower Ephemeroptera, Plecoptera, and Trichoptera richness and biotic integrity in nonreference streams. HGM classifications in Sand Hills, sand‐bed streams were determined from channel geometry. This easily implemented classification is indicative of contemporary hydrologic disturbance resulting in contrasting macroinvertebrate assemblages.  相似文献   

8.
Nutrient concentration targets are an important component of managing river eutrophication. Relationships between periphyton biomass and site characteristics for 78 gravel‐bed rivers in New Zealand were represented by regression models. The regression models had large uncertainties but identified broad‐scale drivers of periphyton biomass. The models were used to derive concentration targets for the nutrients, total nitrogen (TN) and dissolved reactive phosphorous (DRP), for 21 river classes to achieve periphyton biomass thresholds of 50, 120, and 200 mg chlorophyll a m?2. The targets incorporated a temporal exceedance criterion requiring the specified biomass threshold not be exceeded by more than 8% of samples. The targets also incorporated a spatial exceedance criterion requiring the biomass thresholds will not be exceeded at more than a fixed proportion (10%, 20%, or 50%) of locations. The spatial exceedance criterion implies, rather than requiring specific conditions at individual sites, the objective is to restrict biomass to acceptable levels at a majority of locations within a domain of interest. A Monte Carlo analysis was used to derive the uncertainty of the derived nutrient concentration targets for TN and DRP. The uncertainties reduce with increasing size of the spatial domain. Tests indicated the nutrient concentration targets were reasonably consistent with independent periphyton biomass data despite differences in the protocols used to measure biomass at the training and test sites.  相似文献   

9.
Benthic chlorophyll a (BChl a) and environmental factors that influence algal biomass were measured monthly from February through October in 22 streams from three agricultural regions of the United States. At‐site maximum BChl a ranged from 14 to 406 mg/m2 and generally varied with dissolved inorganic nitrogen (DIN): 8 out of 9 sites with at‐site median DIN >0.5 mg/L had maximum BChl a >100 mg/m2. BChl a accrued and persisted at levels within 50% of at‐site maximum for only one to three months. No dominant seasonal pattern for algal biomass accrual was observed in any region. A linear model with DIN, water surface gradient, and velocity accounted for most of the cross‐site variation in maximum chlorophyll a (adjusted R2 = 0.7), but was no better than a single value of DIN = 0.5 mg/L for distinguishing between low and high‐biomass sites. Studies of nutrient enrichment require multiple samples to estimate algal biomass with sufficient precision given the magnitude of temporal variability of algal biomass. An effective strategy for regional stream assessment of nutrient enrichment could be based on a relation between maximum BChl a and DIN based on repeat sampling at sites selected to represent a gradient in nutrients and application of the relation to a larger number of sites with synoptic nutrient information.  相似文献   

10.
11.
Nitrogen (N) and phosphorus (P) are significant pollutants that can stimulate nuisance blooms of algae. Water quality models (e.g., Water Quality Simulation Program, CE‐QUAL‐R1, CE‐QUAL‐ICM, QUAL2k) are valuable and widely used management tools for algal accrual due to excess nutrients in the presence of other limiting factors. These models utilize the Monod and Droop equations to associate algal growth rate with dissolved nutrient concentration and intracellular nutrient content. Having accurate parameter values is essential to model performance; however, published values for model parameterization are limited, particularly for benthic (periphyton) algae. We conducted a 10‐day mesocosm experiment and measured diatom‐dominated periphyton biomass accrual through time as chlorophyll a (chl a) and ash‐free dry mass (AFDM) in response to additions of N (range 5–11,995 µg nitrate as nitrogen [NO3‐N]/L) and P (range 0.89–59.51 µg soluble reactive phosphorus/L). Resulting half‐saturation coefficients and growth rates are similar to other published values, but minimum nutrient quotas are higher than those previously reported. Saturation concentration for N ranged from 150 to 2,450 µg NO3‐N/L based on chl a and from 8.5 to 60 µg NO3‐N/L when based on AFDM. Similarly, the saturation concentration for P ranged from 12 to 29 µg‐P/L based on chl a, and from 2.5 to 6.1 µg‐P/L based on AFDM. These saturation concentrations provide an upper limit for streams where diatom growth can be expected to respond to nutrient levels and a benchmark for reducing nutrient concentrations to a point where benthic algal growth will be limited.  相似文献   

12.
The Fine Sediment Biotic Index (FSBI) is a regional, stressor-specific biomonitoring index to assess fine sediment (<2 mm) impacts on macroinvertebrate communities in northwestern US streams. We examined previously collected data of benthic macroinvertebrate assemblages and substrate particle sizes for 1,139 streams spanning 16 western US Level III Ecoregions to determine macroinvertebrate sensitivity (mostly at species level) to fine sediment. We developed FSBI for four ecoregion groupings that include nine of the ecoregions. The grouping were: the Coast (Coast Range ecoregion) (136 streams), Northern Mountains (Cascades, N. Rockies, ID Batholith ecoregions) (428 streams), Rockies (Middle Rockies, Southern Rockies ecoregions) (199 streams), and Basin and Plains (Columbia Plateau, Snake River Basin, Northern Basin and Range ecoregions) (262 streams). We excluded rare taxa and taxa identified at coarse taxonomic levels, including Chironomidae. This reduced the 685 taxa from all data sets to 206. Of these 93 exhibited some sensitivity to fine sediment which we classified into four categories: extremely, very, moderately, and slightly sensitive; containing 11, 22, 30, and 30 taxa, respectively. Categories were weighted and a FSBI score calculated by summing the sensitive taxa found in a stream. There were no orders or families that were solely sensitive or resistant to fine sediment. Although, among the three orders commonly regarded as indicators of high water quality, the Plecoptera (5), Trichoptera (3), and Ephemeroptera (2) contained all but one of the species or species groups classified as extremely sensitive. Index validation with an independent data set of 255 streams found FSBI scores to accurately predict both high and low levels of measured fine sediment.  相似文献   

13.
Effects of controlled nutrient additions on a prairie stream were studied using a before‐after‐control‐impact paired design. The site is in a reference condition with low soluble nitrate (NO3) and phosphate (soluble reactive phosphorus [SRP]) in summer (3 μg NO3‐N/L, 4 μg SRP/L). Nutrients were added to two reaches over the growing season at two levels (Low Dose — 39 μg NO3‐N/L and 4.4 SRP/L; High Dose — 119 μg NO3‐N/L and 15.6 μg SRP/L). Continuously measured dissolved oxygen (DO) and changes in aquatic flora were compared to an upstream Control. Enrichment led microalgae and filamentous algae to increase in density, areal coverage, and thickness, and the magnitude of the changes were largely concordant with dosing (more in the High Dose); algal growth also suppressed macrophytes in the High Dose. Enrichment caused significant increases in diel DO swings whose magnitudes were consistent with dosing level. In the High Dose, benthic algae flourished in the growing season and then senesced en masse in fall. The decomposing algae led DO to crash (ca. 0 mg/L on the bottom), but DO impacts were out‐of‐sync with peak algal growth and photosynthesis, which occurred weeks earlier. This finding provides a plausible explanation as to why high DO delta in streams impacts aquatic life even when concurrently measured DO is not low. When DO crashed, DO was longitudinally patchy, some areas having low DO near the bottom, others near saturation. Geomorphology and exposure to wind may have caused this pattern.  相似文献   

14.
Shields, F. Douglas, Jr. and Scott S. Knight, 2011. Significance of Riverine Hypoxia for Fish: The Case of the Big Sunflower River, Mississippi. Journal of the American Water Resources Association (JAWRA) 48(1): 170‐186. DOI: 10.1111/j.1752‐1688.2011.00606.x Abstract: Degraded streams draining low‐relief, intensively cultivated watersheds may experience periods of hypoxia or anoxia. A three‐year study of water chemistry, fish, and physical habitat in the Big Sunflower River in northwestern Mississippi coupled with continuously logged physicochemical and hydrology data provided by others showed prolonged periods of hypoxia associated with higher flows. Fish species richness was directly related to dissolved oxygen (DO) concentration (r2 = 0.35, p = 0.00004), and ordination using nonmetric multidimensional scaling (NMS) indicated strong association between fish community structure and DO. Low‐head weirs supported relatively dense and diverse fish communities and thus provided local habitat enhancement, but may create stagnant zones upstream due to backwater effects that exacerbate low DO problems. Although hypoxia has been reported for some lightly degraded rivers and floodplains, our observations suggest hypoxia in Big Sunflower River and similar systems alters fish species composition and should be remediated. Cost‐effective remediation will require better understanding of autotrophic and heterotrophic processes that control DO and the relationship of these processes to discharge.  相似文献   

15.
Orzetti, Leslie L., R. Christian Jones, and Robert F. Murphy, 2010. Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):473-485. DOI: 10.1111/j.1752-1688.2009.00414.x Abstract: This study tested the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining habitat, selected water quality variables, and benthic macroinvertebrate community metrics in 30 streams with buffers ranging from zero to greater than 50 years of age. To assess water quality we measured in situ parameters (temperature, dissolved oxygen, and conductivity) and laboratory-analyzed grab samples (soluble reactive phosphorus, total phosphorus, nitrate, ammonium, and total suspended solids). Habitat conditions were scored using the Environmental Protection Agency Rapid Bioassessment Protocols for high gradient streams. Benthic macroinvertebrates were quantified using pooled riffle/run kick samples. Results showed that habitat, water quality, and benthic macroinvertebrate metrics generally improved with age of restored buffer. Habitat scores appeared to stabilize between 10 and 15 years of age and were driven mostly by epifaunal substrate availability, sinuosity, embeddedness, and velocity depth regime. Benthic invertebrate taxa richness, percent Ephemeroptera, Plecoptera, Trichoptera minus hydropsychids (%EPT minus H), % Ephemeroptera, and the Family Biotic Index were among the metrics which improved with age of buffer zone. Results are consistent with the hypothesis that forest riparian buffers enhance instream habitat, water quality, and resulting benthic macroinvertebrate communities with noticeable improvements occurring within 5-10 years postrestoration, leading to conditions approaching those of long established buffers within 10-15 years of restoration.  相似文献   

16.
Abstract: The eastern panhandle region of West Virginia is entirely within the Appalachian Ridge and Valley ecoregion. It is underlain by limestone in the eastern part and by shale and sandstone in the western part. Agricultural and urban development has affected the condition of the streams of this region. We examined samples from 165 stations in the Ridge and Valley, collected from 1998 to 2004. Land use, geological characteristics, physical and chemical parameters, and algal and macroinvertebrate assemblages were used to identify potential stressors that affect streams in the region. Our analyses indicated that both human land uses and ecoregional differences led to elevated nutrient concentrations in streams of the study areas. Multiple regression analyses indicated that both agricultural and urban land use in the watershed were associated with high nutrient concentrations (NO2+3, total nitrogen, and total phosphorus) in streams. These elevated nutrient concentrations have led to increased algal biomass, increased trophic state, and degradation of macroinvertebrate community in the streams. Values of the West Virginia Stream Condition Index, as well as several other benthic macroinvertebrate metrics, decreased with increased nutrient concentrations and conductivity, especially in the limestone region. When regional differences were partitioned out in the analysis, nutrient concentrations became the strongest stressor in the limestone region while conductivity exhibited less of an effect on macroinvertebrate metrics. Meanwhile, periphyton diagnostic metrics also responded to increased nutrient concentrations, suggesting nutrients could be a cause of biological degradation in the Eastern Ridge and Valley region. Multiple approaches and multiple lines of evidence (reference approach and stressor‐response approach) were applied to develop nutrient benchmarks for different geological regions in the study watershed.  相似文献   

17.
We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated (P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera–Plecoptera–Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables.  相似文献   

18.
We sampled 41 sites on 34 nonwadeable rivers that represent the types of rivers in Wisconsin, and the kinds and intensities of nutrient and other anthropogenic stressors upon each river type. Sites covered much of United States Environmental Protection Agency national nutrient ecoregions VII—Mostly Glaciated Dairy Region, and VIII—Nutrient Poor, Largely Glaciated upper Midwest. Fish, macroinvertebrates, and three categories of environmental variables including nutrients, other water chemistry, and watershed features were collected using standard protocols. We summarized fish assemblages by index of biotic integrity (IBI) and its 10 component measures, and macroinvertebrates by 2 organic pollution tolerance and 12 proportional richness measures. All biotic and environmental variables represented a wide range of conditions, with biotic measures ranging from poor to excellent status, despite nutrient concentrations being consistently higher than reference concentrations reported for the regions. Regression tree analyses of nutrients on a suite of biotic measures identified breakpoints in total phosphorus (~0.06 mg/l) and total nitrogen (~0.64 mg/l) concentrations at which biotic assemblages were consistently impaired. Redundancy analyses (RDA) were used to identify the most important variables within each of the three environmental variable categories, which were then used to determine the relative influence of each variable category on the biota. Nutrient measures, suspended chlorophyll a, water clarity, and watershed land cover type (forest or row-crop agriculture) were the most important variables and they explained significant amounts of variation within the macroinvertebrate (R 2 = 60.6%) and fish (R 2 = 43.6%) assemblages. The environmental variables selected in the macroinvertebrate model were correlated to such an extent that partial RDA analyses could not attribute variation explained to individual environmental categories, assigning 89% of the explained variation to interactions among the categories. In contrast, partial RDA attributed much of the explained variation to the nutrient (25%) and other water chemistry (38%) categories for the fish model. Our analyses suggest that it would be beneficial to develop criteria based upon a suite of biotic and nutrient variables simultaneously to deem waters as not meeting their designated uses.  相似文献   

19.
Nutrient enrichment is a frequently cited cause for biotic impairment of streams and rivers in the USA. Efforts are underway to develop nutrient standards in many states, but defensible nutrient standards require an empirical relationship between nitrogen (N) or phosphorus (P) concentrations and some criterion that relates nutrient levels to the attainment of designated uses. Algal biomass, measured as chlorophyll-a (chl-a), is a commonly proposed criterion, yet nutrient-chl-a relationships have not been well documented in Illinois at a state-wide scale. We used state-wide surveys of >100 stream and river sites to assess the applicability of chl-a as a criterion for establishing nutrient standards for Illinois. Among all sites, the median total P and total N concentrations were 0.185 and 5.6 mg L(-1), respectively, during high-discharge conditions. During low-discharge conditions, median total P concentration was 0.168 mg L(-1), with 25% of sites having a total P of > or =0.326 mg L(-1). Across the state, 90% of the sites had sestonic chl-a values of < or =35 microg L(-1), and watershed area was the best predictor of sestonic chl-a. During low discharge there was a significant correlation between sestonic chl-a and total P for those sites that had canopy cover < or =25% and total P of < or =0.2 mg L(-1). Results suggest sestonic chl-a may be an appropriate criterion for the larger rivers in Illinois but is inappropriate for small rivers and streams. Coarse substrate to support benthic chl-a occurred in <50% of the sites we examined; a study using artificial substrates did not reveal a relationship between chl-a accrual and N or P concentrations. For many streams and rivers in Illinois, nutrients may not be the limiting factor for algal biomass due to the generally high nutrient concentrations and the effects of other factors, such as substrate conditions and turbidity.  相似文献   

20.
Diel (24-h) cycling of dissolved O2 (DO) in rivers is well documented, but evidence for coupled diel changes in DO and nitrogen cycling has only been demonstrated in hypereutrophic systems where DO approaches zero at night. Here, we show diel changes in N2O and DO concentration at several sites across a trophic gradient. Nitrous oxide concentration increased at night at all but one site in spring and summer, even when gas exchange was rapid and minimum water column DO was well above hypoxic conditions. Diel N2O curves were not mirror images of DO curves and were not symmetrical about the mean. Although inter- and intrasite variation was high, N2O peaked around the time of lowest DO at most of the sites. These results suggest that N2O must be measured several times per diel period to characterize curve shape and timing. Nitrous oxide concentration was not significantly correlated with NO3- concentration, contrary to studies in agricultural streams and to the current United Nations Intergovernmental Panel for Climate Change protocols for N2O emission estimation. The strong negative correlation between N2O concentration and daily minimum DO concentration suggested that N2O production was limited by DO. This is consistent with N2O produced by nitrite reduction. The ubiquity of diel N2O cycling suggests that most DO and N2O sampling strategies used in rivers are insufficient to capture natural variability. Ecosystem-level effects of microbial processes, such as denitrification, are sensitive to small changes in redox conditions in the water column even in low-nutrient oxic rivers, suggesting diel cycling of redox-sensitive compounds may exist in many aquatic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号