首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
对激光雷达产品的消光系数、退偏振比、边界层高度和气溶胶光学厚度进行统计分析,并与环境监测数据和地面气象观测数据进行对比,验证产品的可靠性。总的来说,大气消光系数垂直变化趋势是接近的,从近地面开始增大,在1km左右高度达到峰值,这就是边界层的所在。4月、11月和12月大气消光系数较高,大气气溶胶浓度较高,8月、9月和10月较低,气溶胶浓度较低,与环境监测数据相吻合。地面能见度和消光系数具有较好的指数相关;近地面处PM_(2.5)、PM_(10)的浓度和消光系数均具有较好的幂相关性;气溶胶光学厚度与PM_(2.5)、PM_(10)浓度有线性正相关;边界层高度与PM_(2.5)、PM_(10)存在显著的负相关,但是相比其他相关性不高;气溶胶光学厚度与能见度有负相关。  相似文献   

2.
针对2020年5月11~12日华北平原出现的一次沙尘过程,使用云高仪和空中国王-350飞机观测平台观测了气溶胶后向散射系数、气象要素、黑碳气溶胶(BC)和0.1~3.0μm气溶胶粒径分布的垂直结构,并结合FY-4A卫星数据、大气污染物数据(PM2.5、PM10、SO2、NO2、CO和O3)、地面气象数据和探空数据,探究了此次沙尘过程中大气污染物和边界层结构的相互作用机制.结果表明,由于逆温层的存在,沙尘在石家庄上空维持在>1km的高度,因此对地面污染物的影响较小.沙尘期间石家庄PM10的平均质量浓度为166.3μg/m3,分别是沙尘前和沙尘后的2.7倍和1.5倍.沙尘过程对边界层结构影响较大.沙尘期间在沙尘层附近形成一层RH较小、风速较大、气溶胶含量较高的“穹顶”结构,阻碍了大气边界层的发展.“穹顶”结构使得贴地逆温消失,有利于近地面污染物的扩散.沙尘层内BC和气溶胶数浓度较高,最大浓度接近地面观测浓度.沙尘过程对不同高度气溶胶数浓度谱谱型影响较小,沙尘层使得0.4~3μm气溶胶数浓度显著增加.  相似文献   

3.
运12飞机和空中国王飞机在2007~2018年的飞机观测资料,分析了北京地区大气气溶胶近12a来的时空变化特征.结果表明,气溶胶数浓度随时间变化显示负增长趋势,而与之相反,气溶胶有效直径表现出正增长趋势.气溶胶垂直廓线的季节变化和气候条件以及边界层的季节变化紧密相关.在边界层高度,季节性气候变化和地面污染物排放强度的影响下,不同季节以及地面天气形势下的气溶胶垂直廓线特征差异也十分明显.气溶胶在边界层内混合均匀,但由于夏季边界层高度较冬季更高,气溶胶能够在更高的高度范围内混合均匀,从而降低了夏季近地面的气溶胶数浓度.此外,气溶胶在550nm的入射波长下散射系数的垂直变化与气溶胶数浓度有较好的一致性,其高值多出现在冬季以及污染物浓度较高的天气条件下.  相似文献   

4.
基于气溶胶光学特性垂直分布的一次浮尘过程分析   总被引:8,自引:4,他引:4  
为了进一步认识上海地区浮尘污染的垂直分布特征,利用地面微脉冲激光雷达(MPL)和CALIPSO星载激光雷达对2009年10月19日远程输送到上海的一次典型浮尘过程的气溶胶光学特性进行分析.结果表明,此次浮尘过程气溶胶层主要存在于2km以下低空中,气溶胶后向散射系数范围0~0.015 km-1·sr-1,MPL消光系数范围0~0.32 km-1.浮尘过程中消光系数先增加后降低,气溶胶层不断抬升.浮尘天气2km以下大气中存在大量小粒径气溶胶颗粒,而0~0.5 km近地面则以颗粒较大的气溶胶为主;2~10 km大气中仅存在少量不规则气溶胶,其中4~6 km高度范围的大气由不规则气溶胶和规则气溶胶混合组成,球型和非球型粒子均存在.CALIPSO星载激光雷达532 nm总后向散射系数和MPL归一化相对后向散射系数的垂直分布特征基本一致.CALIPSO和MPL获得的消光系数垂直分布均随着高度增加而减少,但消光系数值存在较大差异.两者结合起来可以较全面客观地对上海地区浮尘天气进行观测.  相似文献   

5.
西安泾河夏季黑碳气溶胶及其吸收特性的观测研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为研究西安泾河夏季黑碳气溶胶及其吸收特性,利用2011年夏季西安远郊泾河大气成分站观测的黑碳气溶胶浓度、颗粒物质量浓度、探空资料、地面气象资料,计算边界层顶高度、气溶胶吸收系数、大气消光系数,导出单次散射反照率,并对其进行分析讨论.结果表明:西安夏季黑碳气溶胶浓度为6.07μg/m3;黑碳气溶胶占颗粒物质量浓度PM1.0比值为21.9%,黑碳气溶胶与颗粒物质量浓度PM1.0、PM2.5、PM10相关系数分别为0.69、0.85、0.91;黑碳气溶胶浓度受城市边界层顶高度影响,风向、风速对泾河黑碳气溶胶的堆积输送有不同作用;气溶胶吸收系数和大气消光系数日变化显著,气溶胶吸收系数占大气消光系数比值范围在12%~30%;季单次散射反照率平均值为0.76,变化范围在0.70~0.84.  相似文献   

6.
2018年12月15~18日使用激光雷达在河北望都观测气溶胶与O3,利用气溶胶消光系数廓线判断边界层的变化,进而研究大气边界层对于近地表层(300m)O3浓度的影响.结果表明,边界层主要影响O3的干沉降以及高空O3的垂直输送,在受本地污染控制时,近地表O3浓度受干沉降控制明显,随着边界层高度的下降而减少;西北地区气团占主导时,O3浓度主要受水平传输以及高空垂直输送影响.  相似文献   

7.
基于气溶胶激光雷达观测和环境监测站污染物浓度数据、气象观测资料及HYSPLIT后向轨迹模式,分析了2017年12月中下旬,成都市一次本地积累和沙尘输送影响的持续污染过程中污染物浓度、污染物来源、天气系统和气溶胶消光系数的垂直分布及演变.结果表明:①此次污染过程持续时间长,根据气象条件和主要污染物种类,分为本地污染累积、北方沙尘输送和混合影响3个阶段.②本地污染积累阶段,消光系数垂直分布不均匀,受湿度、太阳辐照与逆温层等气象因子的影响,垂直结构变化较大.消光系数最大值多出现在250 m附近,此阶段退偏比数值很小.③沙尘影响阶段,消光系数较前期明显下降,高值区位于250 m及2 km处.退偏比显示沙尘粒子于29日午后开始逐渐抵达成都市2 km高空,并于夜间达到峰值.退偏比相较本地污染累积阶段明显增大,各时段退偏比结构类似,近地面数值略低于高空.④混合影响阶段,消光系数强度小幅回升,退偏比显示有部分沙尘粒子漂浮在1~2 km高度上.  相似文献   

8.
北京上空气溶胶浓度垂直廓线特征   总被引:1,自引:1,他引:1       下载免费PDF全文
利用2008—2010年北京地区3.5 km高空内飞机探测的气溶胶(粒径范围为0.10~3.00 μm)数据,分析了该地区气溶胶的时空分布特征. 结果表明:①气溶胶浓度(以数浓度计,下同)均随高度增加而减小,在1.5 km以上高空的气溶胶浓度垂直梯度变化明显低于1.5 km以下的垂直梯度变化. 4—11月气溶胶浓度季节变化表现为夏季最高、秋季次之、春季最低. ②气溶胶浓度廓线逐时(09:00—19:00)变化较清晰地反映出其受大气边界层演变的影响. 在0~1.5 km高空,白天气溶胶浓度高值出现在09:00—11:00,低值出现在13:00—14:00;而在1.5~3.5 km高空的气溶胶浓度时段分布与其相反. ③人为活动是影响气溶胶浓度区域水平分布的重要因子. ④将气溶胶浓度廓线垂直分布分为a、b、c 3类. 类型a的近地面气溶胶浓度(0~4 000 cm-3)低,垂直方向上变化很小;类型b的近地面气溶胶浓度(4 000~9 000 cm-3)较高,垂直递减明显;类型c的近地面气溶胶浓度特别高,量级达到104 cm-3,并在大气边界层顶(约1.5 km)附近迅速递减. 北京地区气溶胶浓度廓线以类型b居多.   相似文献   

9.
将微脉冲激光雷达与GPS等仪器集成在车辆上组成移动观测系统,以徐州市为研究区域,开展大气环境立体走航式观测获取了2015年1月11日(重度污染)、12日(空气质量良好)、17日(轻度污染)3d的市区不同路线的1.5km以下的气溶胶消光廓线信号.结果表明,空气质量良好和轻度污染情况时,徐州市近地面气溶胶消光系数相对高值点主要位于商业区域和工业区域.商业区域的污染物主要来自车辆尾气的排放,车流量的大小决定了消光系数值的高低;工业区域的污染物主要来自火电厂的排放,占比达到70%以上.重度污染天气情况下,近地面气溶胶消光系数主要受污染过程的时间演变控制.气溶胶的垂直分布与边界层的演变密切相关,下午的边界层高度比上午普遍要高,晴朗且空气质量良好的情况下,边界层最高,达到1km以上.气溶胶消光系数高值基本出现在250m以下的近地面.工业区域火电厂排放的烟尘主要出现在1km左右.使用不同的仪器测量得到的气溶胶光学厚度趋势大致相同,激光雷达反演的气溶胶光学厚度波动最大.微脉冲激光雷达与GPS等仪器组成的移动观测平台能够有效地探测城市小范围的气溶胶时空分布,而且便捷有效,具有灵活机动性和推广应用价值.  相似文献   

10.
2009年秋季利用河北省人工影响天气办公室机载气溶胶粒子探头(PCASP-100X)和前向散射滴谱探头(FSSP-100-ER)在石家庄市上空进行了多次气溶胶观测.选取2009年9~10月间的7架次雾天、1架次小雨天及1架次密卷云天观测资料,重点研究雾天气溶胶粒子数浓度和直径的垂直、水平分布特征及粒子谱分布,并与密卷云天和小雨天的探测资料进行对比分析.结果表明:石家庄地区气溶胶粒子数浓度较高,近地面最大值达11910个/cm3.气溶胶粒子数浓度主要受天气条件影响,逆温层是影响粒子垂直输送的主要因素,在逆温层下粒子累积形成粒子数浓度的高值区,逆温层以上气溶胶粒子数浓度迅速减少,雾天和密卷云天粒子数浓度随高度多呈负指数分布;雾天多伴有逆温层和较大空气湿度,有利于气溶胶粒子累积,数浓度一般可达104个/cm3以上,容易形成低能见度污染天气;气溶胶粒子数浓度在无降水日有累积效应,降雨对气溶胶粒子有明显清除作用;粒子数浓度和粒子直径在水平方向上呈不均匀分布,随着高度增加粒子数浓度和直径的水平绝对偏差减小,相对偏差往往增大;不同天气下尺度谱型类似,多呈单峰分布,在0.11μm左右处出现峰值,但在雾天、密卷云天、小雨天气下的气溶胶粒子峰值依次变小,并且随高度增加,尺度谱峰值数密度值降低,谱变窄.  相似文献   

11.
利用2015年1月气溶胶散射和吸收系数、PM2.5质量浓度、大气能见度以及常规气象观测数据,分析了南京冬季大气气溶胶散射系数与吸收系数的变化特征,给出了散射系数与吸收系数对大气消光的贡献,以及能见度与PM2.5质量浓度和相对湿度的关系.结果表明,观测期间南京大气气溶胶的散射系数和吸收系数分别为(423.4±265.3) Mm-1和(24.5±14.3) Mm-1,对大气消光的贡献分别为89.2%和5.2%,表明大气消光主要贡献来自于气溶胶的散射.散射系数与PM2.5相关性较好(R2=0.91),能见度随PM2.5质量浓度呈指数下降,也与相对湿度保持一定负相关性.能见度均值为4.3km,且连续出现能见度不足2km的低能见度天气,霾天气下消光系数和PM2.5质量浓度大幅超过非霾天气,最高值分别达到1471.2Mm-1和358 μg/m3,霾天气下能见度的降低来自颗粒物与相对湿度的共同影响.  相似文献   

12.
为研究北京市气溶胶垂直方向上的分布特征,利用微脉冲激光雷达(MPL)对北京市2015年12月-2016年11月的气溶胶光学特征进行分析,讨论了气溶胶消光系数的季节性特点以及不同污染等级下的垂直分布,并对其影响因素进行了探讨.结果表明:①北京市气溶胶消光系数垂直特征在季节上存在异质性.秋、冬两季近地面1.0 km以下气溶胶消光系数显著增大,最大气溶胶消光系数大于1.0 km-1;春、夏两季污染日较少,气溶胶消光系数在垂直方向上变化较为平缓.②不同污染等级下气溶胶消光系数的垂直特征差异明显.空气质量为优-良水平时,气溶胶消光系数较低,基本不高于0.7 km-1;轻-中度污染时,气溶胶消光系数在不同季节差异较大,冬、春两季气溶胶消光系数不超过0.8 km-1,夏、秋两季在1.0 km-1左右,部分监测站甚至在1.4 km-1左右;重度及以上污染时,气溶胶消光系数基本在1.0 km-1以上,最高可达1.7 km-1.③105 m处气溶胶消光系数与ρ(PM2.5)相关性较好.气溶胶消光系数除受ρ(PM2.5)影响外,还受相对湿度影响较大.夏、秋两季对流层底层大气相对湿度偏高,致使气溶胶消光系数显著高于春季和冬季.研究显示,利用激光雷达可对北京市气溶胶垂直方向分布特征进行有效分析,气溶胶的垂直分布受污染水平和相对湿度的影响呈季节性变化.   相似文献   

13.
目的分析北京地区大气温湿廓线对气溶胶垂直分布的影响。方法利用北京地区2017年9月至2018年8月每日两次(08时和20时)的气象探空、地面PM_(2.5)浓度和气溶胶激光雷达消光系数资料,分析不同污染条件下大气温湿廓线与气溶胶消光系数廓线的关系。结果地面PM_(2.5)浓度和210m气溶胶消光系数的相关系数达到0.77。春季、秋季和冬季污染条件下的近地面消光系数约是清洁条件下的5倍,夏季污染条件下的近地面消光系数约是清洁条件下的3倍。相比清洁条件下,污染条件下各季节的大气温度垂直递减率偏小,并且低层大气相对湿度偏大。结论大气温度廓线代表大气层结稳定性,影响气溶胶的扩散高度,而相对湿度廓线与气溶胶吸湿增长密切相关,两者对气溶胶消光系数的垂直分布都有重要影响。  相似文献   

14.
为探讨西安市典型霾过程中的气溶胶垂直分布特征和气象要素影响,利用地面空气质量数据、CALIPSO卫星激光雷达资料以及气象要素资料,并结合HYSPLIT后向轨迹模式、天气形势分析、相关性分析等,对西安市2016年12月17-21日霾过程依据RH(相对湿度)进行干霾、湿霾和雾霾的划分,并分析不同阶段的气溶胶垂直分布特征.结果表明:前期干霾阶段,西北沙尘的输送使得高空气溶胶退偏比和色比较大,以沙尘型气溶胶为主;中期湿霾阶段,RH的增大使得低层细粒子增多,消光系数达1.7 km-1,以污染型气溶胶为主;后期干霾阶段时,低层大气中非球形粗粒子增多,以混合型气溶胶占主导.气象要素对霾过程影响较大,静风、高湿、"双逆温"效应不利于颗粒物的清除,逆温强度的变化与污染物的消长具有一定的滞后一致性.RH和ρ(PM)共同影响能见度变化,RH高于80%时,能见度由RH主导,相关系数达到-0.871;RH低于80%的污染阶段,ρ(PM)对能见度起主导作用,相关系数达0.85以上.研究显示,不同霾阶段气溶胶垂直分布特征差异较大,气象要素对霾过程的消长有重要影响.   相似文献   

15.
北京春季强沙尘过程前后的激光雷达观测   总被引:2,自引:0,他引:2       下载免费PDF全文
利用激光雷达、PM2.5和地面气象要素等综合观测资料,分析了北京地区2012年3月30—31日的强沙尘过程前后的天气形势和PM2.5的污染特征,反演了雷达探测期间得到的消光系数,探讨了沙尘过程中气溶胶的时空分布特征及输送特征. 结果表明:沙尘过境时,地面风速最大达到6m/s,沙尘沉降时ρ(PM2.5)增至289μg/m3,相对湿度和能见度明显降低,大气低层逆温和近地面风速等气象条件对沙尘影响地面的时间和程度起到了重要作用;沙尘层雷达反演的气溶胶消光系数最大为0.96km-1,偏振比最大为0.4,近地面消光系数变化与地面ρ(PM2.5)变化规律吻合较好,其探测可以精确反映不同天气形势下气溶胶的垂直结构和时空变化信息;高空输送至北京的沙尘以粗颗粒物为主,细粒子主要来源于本地及周边地区细粒子源;西北方向的内蒙及外蒙地区沙尘输送是导致此次北京强沙尘过程的主要原因.   相似文献   

16.
天津城区春季大气气溶胶消光特性研究   总被引:8,自引:0,他引:8       下载免费PDF全文
利用天津大气边界层观测站2011年4月1日~5月10日气溶胶散射系数、吸收系数、PM2.5质量浓度、大气能见度和常规气象观测数据,分析了气溶胶散射系数和吸收系数的变化特征,以及气溶胶消光系数与PM2.5质量浓度和大气能见度的关系,并对两种方法计算的消光系数进行了比较.结果表明,观测期间天津城区气溶胶散射系数为369.93 Mm-1,对大气消光贡献为86.7%,气溶胶吸收系数为36.32 Mm-1,对大气消光贡献为8.5%,单次散射反照率为0.91;气溶胶散射系数和吸收系数的日变化特征具有明显的双峰结构,对应于早晚交通高峰;不同天气类型下其日分布特征存在较大差异,霾日散射系数和吸收系数最高,沙尘日和降水日次之,晴日最低;气溶胶散射系数和吸收系数与PM2.5质量浓度呈线性正相关,与大气能见度呈指数负相关,观测期间气溶胶质量散射效率均值为2.95m2/g;采用Koschmieder’s公式反算能见度获得的大气消光系数,与通过测量气溶胶散射系数、气溶胶吸收系数、气体散射系数和气体吸收系数等分量加和获得的消光系数相比一致性较好,高相对湿度天气下能见度反算值高于各系数加和值.  相似文献   

17.
南京冬季大气气溶胶粒子谱分布及其对能见度的影响   总被引:8,自引:16,他引:8  
尚倩  李子华  杨军  濮梅娟 《环境科学》2011,32(9):2750-2760
2009年11~12月采用宽范围气溶胶粒径谱仪(WPS)、自动气象站和能见度仪等高分辨率仪器对南京北郊气溶胶粒子的谱分布特征与气象因子的关系及其对大气能见度的影响进行研究.结果表明,数浓度谱呈双峰分布,主峰集中在0.04~0.1μm;质量浓度谱的2个主峰位于0.5~0.7μm和2.7μm左右;表面积谱的2个主峰分别位于...  相似文献   

18.
中山市旱季霾特征及数值模拟分析   总被引:1,自引:1,他引:0  
利用观测数据、Hysplit后向轨迹模式以及WRF-CMAQ模式对中山市旱季霾特征进行模拟分析.中山市霾污染的天气形势以大陆高压型为主.当相对湿度在71%~90%时,气溶胶浓度和能见度的负相关性最显著,且当能见度减小到5 km以下时,PM_(2.5)浓度的大幅减小才能使能见度略有好转.最有可能引起中山发生霾天气的两条污染带,一条是沿中山至湖南南部,另一条是沿中山到粤东地区.WRF-CMAQ模式能较好地模拟出2014年1月份中山PM_(2.5)浓度、能见度的变化趋势以及广东省区域内灰霾的污染过程.在气溶胶质量权重及消光贡献中,硫酸盐的比重最高,在高相对湿度下,二次气溶胶的消光权重超过80%.通过中山PM_(2.5)过程分析发现,在霾过程,无冷空气时PM_(2.5)主要来自气溶胶反应、排放源和水平平流,贡献率分别为35%、15%和10%,有冷空气时水平平流的贡献最大,达37%;在清洁过程,无冷空气时气溶胶主要靠水平平流和干沉降清除,贡献率分别为-39%和-14%,有冷空气时清除以水平平流和垂直对流、扩散为主,贡献率分别为-29%和-25%,说明不同天气条件下霾的污染和清洁机制有着明显差别.  相似文献   

19.
北京2013年1月连续强霾过程的污染特征及成因分析   总被引:10,自引:0,他引:10       下载免费PDF全文
以北京市2013年1月份连续灰霾天气中10~16日的强霾污染过程为例,利用MPL-4B型IDS系列微脉冲激光雷达观测资料由Fernald算法反演得到此次污染过程中气溶胶垂直分布特性,结合地面气象条件和天气形势分析污染原因,并讨论与气溶胶地面监测数据的符合性.结果表明:此次连续强霾过程污染严重,观测时段内89.4%的时间出现霾,39.8%的污染时段达到重度霾级别,其中大气地表消光系数与PM2.5浓度变化呈显著线性相关关系,相关系数达0.95.研究过程内,大气边界层在91%的时段低于500m,平均仅为293m,低边界层抑制了污染物的有效扩散;近地面垂向各高度的消光系数持续达到1.5km-1以上,对比气溶胶退偏比发现城市上空的大气强消光为气溶胶颗粒物和大气水分共同导致;气溶胶光学厚度(AOD,532nm)较大,有83.6%的时段超过1,且受相对湿度影响较大,相对湿度偏小时段的AOD值主要为气溶胶颗粒贡献,相对湿度较大时段,细颗粒物吸湿增长导致AOD受大气水分干扰显著.连续静稳的天气形势和区域污染是导致此次强霾发生和持续的主要原因,高湿天气则加剧了灰霾状况.  相似文献   

20.
利用微脉冲激光雷达(MPL)对上海浦东2008年12月1日至2010年11月31日期间连续观测的霾期间气溶胶的消光特性进行分析,讨论了上海浦东地区不同强度霾和无霾时气溶胶的垂直分布日变化与季节变化.结果表明,重、中度霾的气溶胶主要分布在500m以下,小时平均消光系数值在0~1.2km-1范围内波动;轻度霾及轻微霾时段,小时平均消光系数波动范围约在0~0.5km-1;无霾时段小时平均消光系数波动范围约在0~0.2km-1;中-重度霾时段消光系数春>冬>夏>秋;夏季低层大气消光较大,春季高层大气消光较大,冬秋两季随高度增加消光逐渐减小;夏冬两季较易发生中、重度霾.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号