首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
4A zeolite supported nanoparticulate zero-valent iron (nZVI/4A zeolite), synthesized through borohydride reduction method, was used as a catalyst with H2O2 to build Fenton-like reaction system to degrade methylene blue (MB) in model wastewater. The characteristics and primary mechanisms of the catalyst were investigated. The results show that nZVI/4A zeolite has the potential as a Fenton-like catalyst, and (about 30 mg/L) MB was degraded completely in 3 h with 10 mM H2O2, 0.2 g/L catalyst, and initial pH of 3.0. The MB degradation rates were obtained at least 70% in the tests with initial pH ranged from 2.0 to 9.0 and the catalyst dose rose from 0.2 to 5.0 g/L. Importantly, the catalyst also has a distinctive ability to increase the solution pH value from its initial acidic pH and then maintain the value at close to neutrality. This ability was controlled by both the initial pH and the catalyst dose. MB degradation clarified that hydroxyl radical was the dominated active oxidative specie in the tests with initial acidic pH and low catalyst dose (less 2.5 g/L); otherwise, Fe(VI) oxidation was the main mechanism for MB degradation; and the two processes shared synergistic effect in MB degradation in the present test. The catalyst has high operational stability in both of the composites with low iron leaching (less 2%) and catalyzing ability. Therefore, nZVI/4A zeolite has great potential as a Fenton-like catalyst and is used with H2O2 to build Fenton-like system which could be used to degrade MB efficiently.  相似文献   

2.
The effects of chlorine dioxide and chlorine disinfections on the genotoxicity of different biologically treated sewage wastewater samples were studied by umu-test. The experiment results showed that when chlorine dioxide dosage was increased from 0 to 30 mg/L, the genotoxicity of wastewater first decreased rapidly and then tended to be stable, while when the chlorine dosage was increased from 0 to 30 mg/L, the genotoxicity of wastewater changed diversely for different samples. It was then found that ammonia nitrogen did not affect the change of genotoxicity during chlorine dioxide disinfection of wastewater, while it greatly affected the change of genotoxicity during chlorine disinfection of wastewater. When the concentration of ammonia nitrogen was low (< 10–20 mg/L), the genotoxicity of wastewater decreased after chlorine disinfection, and when the concentration of ammonia nitrogen was high (> 10–20 mg/L), the genotoxicity of wastewater increased after chlorine disinfection.  相似文献   

3.
以锐钛矿TiO2(P25)为载体采用原位生长法负载锰氧化物制备了Mn/TiO2催化剂,再以等体积浸渍-煅烧法对该催化剂掺杂氧化铈制备Ce(x)Mn/TiO2-y催化剂用以烟气低温SCR脱硝.在固定锰负载量(质量分数为8%)的基础上,考察了铈掺杂量(铈锰摩尔比)、煅烧温度对催化剂SCR脱硝性能的影响.采用TEM、BET、XRD和XPS等手段表征了催化剂的理化结构特性.结果发现,当Ce/Mn的摩尔比例为1.0,煅烧温度为300℃时,Ce(1.0)Mn/TiO2-300催化剂在150—300℃温度范围内、10500—27000 h-1的空速范围内,能够保持90%以上的NO转化率.理化性能分析结果表明,煅烧温度对催化剂的微观形貌影响显著,随着煅烧温度的升高,Ce(1.0)Mn/TiO2-500催化剂活性物种颗粒集聚明显、比表面积降低,且锰氧化物价态分布偏向于低价态;铈的掺杂有助于Ce(1.0)Mn/TiO2-300催化剂活性物种在载体表面的均匀分散,可以促进产生更多的Mn4+物种和更多的吸附氧,有利于催化剂低温SCR脱硝性能的提升.  相似文献   

4.
A spent fluid catalytic cracking (FCC) catalyst containing lanthanum (La) was used as a novel adsorbent for phosphorus (P) in simulated wastewater. The experiments were conducted in a batch system to optimize the operation variables, including pH, calcination temperature, shaking time, solid-liquid ratio, and reaction temperature under three initial P-concentrations (C0 = 0.5, 1.0, and 5.0 mg/L). Orthogonal analysis was used to determine that the initial P-concentration was the most important parameter for P removal. The P-removal rate exceeded 99% and the spent FCC catalyst was more suitable for use in low P-concentration wastewater (C0 <5.0 mg/L). Isotherms, thermodynamics and dynamics of adsorption are used to analyze the mechanism of phosphorus removal. The results show that the adsorption is an endothermic reaction with high affinity and poor reversibility, which indicates a low risk of second releasing of phosphate. Moreover, chemical and physical adsorption coexist in this adsorption process with LaPO4 and KH2PO4 formed on the spent FCC catalyst as the adsorption product. These results demonstrate that the spent FCC catalyst containing La is a potential adsorbent for P-removal from wastewater, which allows recycling of the spent FCC catalyst to improve the quality of water body.
  相似文献   

5.
通过水热法合成了铈掺杂MCM-41(Ce-MCM-41)介孔分子筛,并将其用于臭氧氧化水中对氯苯甲酸(p-CBA).小角X射线衍射(XRD)、氮气吸附-脱附(BET)、紫外可见漫反射光谱(UV-Vis DRS)、透射电镜(TEM)表征结果表明,铈成功进入MCM-41分子筛骨架,以正四面体形式存在,且Ce-MCM-41保持了纯硅MCM-41有序的介孔结构,具有较高的比表面积;铈的掺杂显著提高MCM-41催化臭氧氧化对氯苯甲酸的活性,反应60 min后,TOC去除率由MCM-41的63%提高到86%(Si/Ce=60),而单独臭氧氧化仅为52%;铈的溶出仅为0.085 mg.L-1,较同样负载量的铈负载Ce/MCM-41的溶出(0.44 mg.L-1)有较大减少.催化剂重复使用3次后仍保持较高的活性,这表明Ce-MCM-41具有较好的活性和稳定性,是一种有前景的臭氧氧化催化剂.  相似文献   

6.
A La-doped Co-Cu-Fe catalyst was synthesized for the antipyrine (ANT) removal. The La-doped catalyst had higher ANT removal than the control (95% vs. 54%). La reduced the particle size and increased the specific surface area of catalyst. The aim of this study was to synthesize a novel lanthanum (La) doped catalyst and to investigate antipyrine removal in wastewater using the Fenton-like process with the catalyst. The La-doped Co-Cu-Fe catalyst was synthesized using the modified hydrothermal method. Results showed that the La-doped catalyst had higher specific surface area and lower particle size than the catalyst without La doping (i.e., the control) (267 vs. 163 m2/g and 14 vs. 32 nm, respectively). Under the conditions of catalyst dosage 0.5 g/L, H2O2 concentration 1.70 g/L, and NaHCO3 0.1 g/L, the antipyrine removal within 60 min using the Fenton-like process with the La-doped catalyst was much higher than that with the control (95% vs. 54%). The hydroxyl radical concentration with the La-doped catalyst within 60 min was two times higher than that with the control (49.2 vs. 22.1 mg/L). The high catalytic activity of La-doped catalyst was mainly attributed to its high specific surface area based on the X-ray photoelectron spectroscopy result. Our La-doped catalyst should have great potential to remove antipyrine in wastewater using the heterogeneous Fenton-like process.  相似文献   

7.
Microwave irradiation has been used to prepare Al, Fe-pillared clays from a natural Tunisian smectite from the El Hicha deposit (province of Gabes). Chemical analysis, XRD spectra and surface properties evidenced the success of pillaring process. The obtained solids present higher surface area and pore volume than conventionally prepared Al-Fe pillared clays. The main advantages of the microwave methodology are the considerable reduction of the synthesis time and the consumption of water. The microwave-derived Al-Fe pillared clays have been tested for catalytic wet air oxidation (CWAO) of phenol in a stirred tank at 160°C and 20 bar of pure oxygen pressure. These materials are efficient for CWAO of phenol and are highly stable despite the severe operating conditions (acidic media, high pressure, high temperature). The catalyst deactivation was also significantly hindered when compared to conventionally prepared clays. Al-Fe pillared clays prepared by microwave methodology are promising as catalysts for CWAO industrial water treatment.
  相似文献   

8.
Abstract

A metal-organic framework of iron-doped copper 1,4-benzenedicarboxylate was synthesized and, for the first time, utilized as a heterogeneous photo-Fenton catalyst for degradation of methylene blue dye in aqueous solution under visible light irradiation. The synthesized materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The influence factors, kinetics, and stability of the synthesized catalysts were investigated in detail. Iron-doped copper 1,4-benzenedicarboxylate showed higher degradation efficiency than pure copper 1,4-benzenedicarboxylate. An almost complete degradation was achieved within 70?min under visible light irradiation at a solution pH of 6, a catalyst loading of 1?g?L?1, a H2O2 dosage of 0.05?mol L?1 and methylene blue concentration of 50?mg?L?1. Recycling studies demonstrated that the iron-doped copper 1,4-benzenedicarboxylate is a promising heterogeneous photo-Fenton catalyst for long-term removal of methylene blue dye from industrial wastewater.  相似文献   

9.
采用溶胶凝胶法制备了不同原料比例碘铈共掺杂纳米TiO2催化剂,运用X射线光电子能谱(XPS),X射线衍射(XRD),透射电镜(TEM)等检测手段对催化剂进行了初步表征.结果表明,经过450℃煅烧处理得到的TiO2、铈掺杂TiO2以及碘铈共掺杂TiO2催化剂均为锐钛矿相,掺杂的Ce和I原子可能以I—Ce—O及O—Ti—I等键合方式进入TiO2晶格内部,此外,I-Ce离子共掺杂能有效降低TiO2表面的电子-空穴对的复合.以染料罗丹明B(Rhodamine B,RhB)和无色小分子水杨酸(Salicylic acid,SA)为降解的目标化合物,发现碘铈共掺杂的最佳物质的量之比为nCe∶nI∶nTi=0.04∶0.05∶1,即I0.05Ce0.04TiO2催化剂在可见光照射下(λ〉420 nm)降解目标化合物其光化学活性明显优于单掺铈的TiO2催化剂和未掺杂的TiO2.该催化反应涉及到空穴氧化,并伴有羟基自由基(.OH)、超氧自由基(O2.-)及H2O2等氧化物种的产生.  相似文献   

10.
Electrolytic manganese residue (EMR) is a type of solid waste discharged from the process that converts solid manganese carbonate of rhodochrosite into soluble Mn(II) and generates anode mud under electrolysis. The experimental material was a filtrate created by using distilled water as a dispersal agent for the EMR, followed by simple filtration. A calculated amount of sodium carbonate was added to recover the soluble Mn(II) via precipitation into manganese carbonate. Data showed that Mn concentration may be markedly decreased from 2069 to 36 mg/L, thereby reaching a recovery rate as high as 98%. Analysis demonstrated that precipitation of Mn(II) from a leached aqueous solution followed first-order kinetics. The findings indicate that the reaction rate constant decreased as temperature gradually rose and that its apparent activation energy Ea was ?10.48 kJ/mol.  相似文献   

11.
糖精钠生产废水的铁氧体法除铜研究   总被引:5,自引:0,他引:5  
对糖精钠生产废水实施铁置换法除铜后,废水中仍含有较高浓度的Cu^2+。本研究进一步以铁氧体法除铜。试验条件下,Cu62+的去除率达98%T以上,出水Cu^2+浓度低于2.5mg/L。通过正交试验,找出最佳工艺及操作参数,从而为该类废水的预处理设计及运行管理提供屯依据。  相似文献   

12.
Catalytic reduction of nitrate in groundwater by sodium formate over the catalyst was investigated. Pd-Cu/γ-Al2O3 catalyst was prepared by impregnation and characterized by brunauer-emmett-teller (BET), inductive coupled plasma (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). It was found that total nitrogen was effectively removed from the nitrate solution (100 mg/L) and the removal efficiency was 87%. The catalytic activity was affected by pH, catalyst amount used, concentration of sodium formate, and initial concentration of nitrate. As sodium formate was used as reductant, precise control in the initial pH was needed. Excessively high or low initial pH (7.0 or 3.0) reduced catalytic activity. At initial pH of 4.5, catalytic activity was enhanced by reducing the amount of catalyst, while concentrations of sodium formate increased with a considerable decrease in N2 selectivity. In which case, catalytic reduction followed the first order kinetics.  相似文献   

13.
陈晨  李北罡 《环境化学》2021,(3):799-807
以天然高分子化合物海藻酸钠(sodium alginate,SA)为骨架,结合磁性Fe3O4和稀土铈离子Ce(Ⅲ)通过溶液反应制备出一种新型的磁性海藻酸铈复合微球(Fe3O4@SA;Ce).采用X射线衍射(XRD)、孔结构比表面积分析(BET)、扫描电子显微镜(SEM)、红外光谱(FT-IR)及振动样品强磁计(VSM)对Fe3O4@SA;Ce的结构进行了表征,并以直接桃红12B(direct red 12B,DR 12B)和直接橙S(direct orange S,DO S)两种染料为吸附对象,探讨了Fe3O4@SA;Ce的吸附剂性能、吸附动力学和热力学.结果表明,Fe3O4@SA;Ce对室温下自然pH染料溶液中DR 12B和DO S均表现出良好的吸附效果,吸附量分别可达464 mg·g-1和730 mg·g-1.在不同温度下(298、313、328 K),Fe3O4@SA;Ce对DR 12B和DO S的吸附过程均可用拟二级吸附动力学方程准确描述.通过等温吸附研究,发现Fe3O4@SA;Ce对两种染料的等温吸附较好地符合Freundlich模型.各种表征结果表明,SA与Ce(Ⅲ)和Fe3O4交联反应后生成的Fe3O4@SA;Ce凝胶球表面有大量深浅不一的褶皱沟纹,形貌发生了显著变化.作为一种绿色环保、制备方法简单、可高效吸附的磁性高分子复合吸附剂,Fe3O4@SA;Ce对高浓度染料具有很好的吸附效果,期望能够在染料废水处理中得到广泛应用.  相似文献   

14.
Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) are efficient processes to degrade organic pollutants in water. In this paper, we especially reviewed the WAO and CWAO processes for phenolic compounds degradation. It provides a comprehensive introduction to the CWAO processes that could be beneficial to the scientists entering this field of research. The influence of different reaction parameters, such as temperature, oxygen pressure, pH, stirring speed are analyzed in detail; Homogenous catalysts and heterogeneous catalysts including carbon materials, transitional metal oxides and noble metals are extensively discussed, among which Cu based catalysts and Ru catalysts were shown to be the most active. Three different kinds of the reactor implemented for the CWAO (autoclave, packed bed and membrane reactors) are illustrated and compared. To enhance the degradation efficiency and reduce the cost of the CWAO process, biological degradation can be combined to develop an integrated technology.
  相似文献   

15.
A technique of soilless culture for removal of total nitrogen (TN) and total phosphorus (TP) from textile wastewater using Lolium multiflorum was conducted in this research. The TN concentration decreased from 50.72 mg/L to 24.64–27.89 mg/L and TP decreased from 6.9 mg/L to 3.7–4.1 mg/L in the experimental tank with the size of 4.7 m x 1.2 m x 0.75 m. The results suggested that L. multiflorum could absorb a large amount of N and P elements from the wastewater. This technique of soilless culture has many advantages such as simple equipment, low cost, easy operation, low energy consumption, convenient management and flexible disposition.  相似文献   

16.
Wet air oxidation (WAO) is one of effective technologies to eliminate hazardous, toxic and highly concentrated organic compounds in the wastewater. In the paper, multi-walled carbon nanotubes (MWCNTs), functionalized by O3, were used as catalysts in the absence of any metals to investigate the catalytic activity in the catalytic wet air oxidation (CWAO) of phenol, nitrobenzene (NB) and aniline at the mild operating conditions (reaction temperature of 155°C and total pressure of 2.5 MPa) in a batch reactor. The MWCNTs were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), gas adsorption measurements (BET), fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The functionalized MWCNTs showed good catalytic performance. In the CWAO of phenol over the functionalized MWCNTs, total phenol removal was obtained after 90 min run, and the reaction apparent activation energy was ca. 40 kJ·mol-1. The NB was not removed in the CWAO of single NB, while ca. 97% NB removal was obtained and 40% NB removal was attributed to the catalytic activity after 180 min run in the presence of phenol. Ca. 49% aniline conversion was achieved after 120 min run in the CWAO of aniline.  相似文献   

17.
● A new adsorption-membrane separation strategy is used for phosphate removal. ● PVC/Zr-BT shows a selective adsorption ability to low-concentration phosphate. ● Low concentration of P below 0.05 mg/L was achieved in actual wastewater treatment. ● Algal biomass production served as a demonstration of phosphorus recycling. Enhanced phosphorus treatment and recovery has been continuously pursued due to the stringent wastewater discharge regulations and a phosphate supply shortage. Here, a new adsorption-membrane separation strategy was developed for rational reutilization of phosphate from sea cucumber aquaculture wastewater using a Zr-modified-bentonite filled polyvinyl chloride membrane. The as-obtained polyvinyl chloride/Zr-modified-bentonite membrane was highly permeability (940 L/(m2·h)), 1–2 times higher than those reported in other studies, and its adsorption capacity was high (20.6 mg/g) when the phosphate concentration in water was low (5 mg/L). It remained stable under various conditions, such as different pH, initial phosphate concentrations, and the presence of different ions after 24 h of adsorption in a cross-flow filtration system. The total phosphorus and phosphate removal rate reached 91.5% and 95.9%, respectively, after the membrane was used to treat sea cucumber aquaculture wastewater for 24 h and no other water quality parameters had been changed. After the purification process, the utilization of the membrane as a new source of phosphorus in the phosphorus-free f/2 medium experiments indicated the high cultivability of economic microalgae Phaeodactylum tricornutum FACHB-863 and 1.2 times more chlorophyll a was present than in f/2 medium. The biomass and lipid content of the microalgae in the two different media were similar. The innovative polyvinyl chloride/Zr-modified-bentonite membrane used for phosphorus removal and recovery is an important instrument to establish the groundwork for both the treatment of low concentration phosphate from wastewater as well as the reuse of enriched phosphorus in required fields.  相似文献   

18.
Fe2O3-CeO2-Bi2O3/γ-Al2O3, an environmental friendly material, was investigated. The catalyst exhibited good catalytic performance in the CWAO of cationic red GTL. The apparent activation energy for the reaction was 79 kJ·mol−1. HO2· and O2· appeared as the main reactive species in the reaction. The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst, a novel environmental-friendly material, was used to investigate the catalytic wet air oxidation (CWAO) of cationic red GTL under mild operating conditions in a batch reactor. The catalyst was prepared by wet impregnation, and characterized by special surface area (BET measurement), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst exhibited good catalytic activity and stability in the CWAO under atmosphere pressure. The effect of the reaction conditions (catalyst loading, degradation temperature, solution concentration and initial solution pH value) was studied. The result showed that the decolorization efficiency of cationic red GTL was improved with increasing the initial solution pH value and the degradation temperature. The apparent activation energy for the reaction was 79 kJ·mol1. Hydroperoxy radicals (HO2·) and superoxide radicals (O2·) appeared as the main reactive species upon the CWAO of cationic red GTL.  相似文献   

19.
化学混凝法处理高浓度含氟废水试验研究   总被引:18,自引:0,他引:18  
本文对华北某铝加工工厂的高浓度含氟废水进行了小处理研究,此种废水平均含氟浓度190mg/L、pH值7。5,经过几种方案的实验比较,投加石灰,硫酸铝和PAM的方法来处理此种废水效果最好,并据此提出了该厂污水处理站的工艺设计。  相似文献   

20.
啤酒废水处理工程设计   总被引:4,自引:0,他引:4  
桂林漓泉有限公司污水处理厂经过改造,采用UASB-SBR工艺进行啤酒废水处理。处理后出水水质指标:COD=35.7mg/L,BOD=10mg/L,达到GB89790-1996《国家污水综合排放标准》的一级标准。改造后的工具具有投资少,占地面积小,结构紧凑,高效低耗,出水水质好,剩余污泥少,可回收能源等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号