首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photo-Fenton reactions, which could yield hydroxyl radicals via the catalytic degradation of H2O2 by Fe(II), were focused as one of the abiotic degradation processes of bisphenol A (BPA) in surface waters. At pH 6, in the presence of H2O2 only, 32% of BPA was degraded after 120?min of irradiation. However, 97% of BPA was degraded in the presence of both H2O2 and Fe(II). Without light irradiation, no BPA degradation was observed even in the presence of Fe(II) and H2O2. These results show that photo-Fenton processes are effective in the natural attenuation of BPA in surface water. In addition, the presence of humic acids (HAs), which were of more aliphatic nature, resulted in enhancing BPA degradation via the photo-Fenton processes. Therefore, HAs can be one of the important factors in enhancing the degradation of BPA in surface water via the photo-Fenton processes.  相似文献   

2.
The kinetics of famotidine (FAM) transformation under the influence of various factors, important from the environmental point of view, was investigated in aqueous solutions. The degradation processes using UV, H2O2, UV/H2O2, H2O2/Fe2+, and UV/H2O2/Fe2+ were studied. Direct photolysis and H2O2-assisted photolysis showed a pseudo-first-order kinetics, while the Fenton and the photo-Fenton processes fit second-order kinetics. The provided experiments proved a high resistance of FAM to direct photolysis. Its stability depends highly on the pH of the reaction solutions. The rate of FAM direct photolysis in acidic solutions was almost negligible. The reaction rate of FAM photolysis at pH 8–9 was 3.7 × 10?3 min?1 with DT50 about 3 h 7 min. It was found that the presence of H2O2 in the reaction environment enhances the rate of photolysis of FAM. The observed rates of reaction were 5.1 × 10?3 min?1 and 3.7 × 10?3 min?1 in acidic and basic solutions, respectively. The used Fenton systems appeared to be the most efficient in FAM removal. The rate of reaction depends on concentration of Fe2+ and H2O2. It was observed that the presence of UV-light enhances the reaction rate by two to six times in comparison to the classical Fenton system. Additionally, FAM behavior in natural water under solar irradiation was examined. The irradiation experiments were carried out in batch experiments with simulated sunlight.  相似文献   

3.
Here we show that the photolysis of FeCl2+ upon UV irradiation of Fe(III) at pH 0.5, yielding Cl and then Cl2−•, upon further reaction with Cl, induces phenol degradation. The photolysis of FeCl2+ can be highlighted and studied as the huge interference by FeOH2+ can be avoided under such conditions. Our data allowed the assessment of a photolysis quantum yield for FeCl2+ of 5.8 × 10−4 under UVA irradiation, much lower compared to the literature value of 0.5. The discrepancy can be explained if the photolysis process is efficient but photoformed Fe2+ and Cl undergo recombination inside the solvent cage.  相似文献   

4.
Humic substances are poorly known, though they represent a major pool of non-biotic organic carbon on earth. In particular, there is little knowledge on the formation of humic substances by irradiation of organic matter dissolved in waters. Specifically, it is known that humic substances can be formed from proteins by photochemical processes in surface waters, but the role of single amino acids and their transformation pathways are not yet known. Therefore, here we studied the phototransformation of aqueous l-tryptophan under simulated sunlight. Irradiated l-tryptophan solutions were analyzed by absorption, fluorescence, nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies, chromatography, potentiometry and mass spectrometry (MS). The solutions appeared turbid after irradiation; therefore, nephelometry and dynamic laser light scattering were used to characterize the suspended particles. Results show that about 95% of l-tryptophan was degraded in 8-h irradiation, undergoing deamination and decarboxylation of the amino acidic moieties to release ammonium and formate. The MS signal at m/z 146 suggests the formation of 3-ethylindole, while pH-metric and NMR data revealed the presence of hydroxylated compounds. The phototransformation intermediates of l-tryptophan had fluorescence and absorption spectra similar to those of humic substances, they were able to produce ·OH upon irradiation and tended to aggregate by both ionic and hydrophobic interactions. Overall, our findings reveal for the first time the nature of products formed upon phototransformation of l-tryptophan. Interestingly, the transformation of l-tryptophan is quite different from that of the previously studied l-tyrosine, although both compounds produce humic-like materials under irradiation.  相似文献   

5.
The ozone oxidation of endocrine disruptor bisphenol A in drinking water was investigated. A stainless completely mixed reactor was employed to carry out the degradation experiments by means of a batch model. With an initial concentration of 11.0 mg/L, the removal efficiencies of BPA (bisphenol A) could be measured up to 70%, 82%, and 90% when the dosages of ozone were 1, 1.5, and 2 mg/L, respectively. The impacts on BPA degradation under the conditions of different ozone dosages, water background values, BPA initial concentrations, and ozone adding time were analyzed. The results showed that ozone dosage plays a dominant role during the process of BPA degradation, while the impact of the contact time could be ignored. UV wavelength scanning was used to confirm that the by-products were produced, which could be absorbed at UV254. The value of UV254 was observed to have changed during the ozonation process. Based on the change of UV254, it could be concluded that BPA is not completely degraded at low ozone dosage, while shorter adding time of total ozone dosage, high ozone dosage, and improvement of dissolved ozone concentration greatly contribute to the extent of BPA degradation. The effects of applied H2O2 dose in ozone oxidation of BPA were also examined in this study. The O3-H2O2 processes proved to have similar effects on the degradation of BPA by ozone oxidation.  相似文献   

6.
The mobility of phenanthrene (PHE) in soils depends on its sorption and is influenced by either the existing soil humus or exogenous humic substances. Exogenous humic acids (HAs) were added to soil to enhance the amount of soil organic carbon (SOC) by 2.5, 5.0, and 10.0 g kg−1. PHE desorption of the treated soils was determined at two pH levels (3.0 and 6.0) and temperatures (15 and 25 °C). Soil PHE adsorption was related to pH and the type and quantity of added HAs. Humic acid (HA) and fulvic acid (FA) derived from peat had different effects on adsorption of PHE. Adsorption increased at first and then decreased with increasing quantity of exogenous FA. When the soil solution pH (in 0.005 M CaCl2) was 4.5 or 3.0, the turning points were 2.5 g FA kg−1 at pH 3.0 and 5 g FA kg−1 at pH 4.5. When soil solution pH was 6, the amount of adsorbed PHE was enhanced with increasing exogenous HAs (HA or FA) and amount of adsorption by soil treated with FA was higher than with HA. Adsorption of PHE in the FA treatment at 10.0 g kg−1 was lower than the controls (untreated soil or treatment with HAs at 0 g kg−1) when the soil solution pH was 3.0. This suggests that FA adsorbed by soil was desorbed at low pH and would then increase PHE solubility, and PHE then combined with FA. PHE adsorption was usually higher under lower pH and/or lower temperature conditions. PHE sorption fitted the Freundlich isotherm, indicating that exogenous humic substances influenced adsorption of phenanthrene, which in turn was affected by environmental conditions such as pH and temperature. Thus, exogenous humic substances can be used to control the mobility of soil PAHs under appropriate conditions to decrease PAH contamination.  相似文献   

7.
双酚A对青岛大扁藻的干扰效应   总被引:1,自引:0,他引:1  
为了探讨双酚A(bisphenol A,BPA)对海洋微藻的生态毒性效应,实验选择了以青岛大扁藻(Platymonas helgolanidica)作为受试物种,设置6个实验浓度(即0、2、4、6、8、10 mg·L-1)对微藻进行了96 h暴露处理,测定了不同浓度暴露下对青岛大扁藻的生长以及抗氧化系统酶活性等指标。研究结果表明,BPA对青岛大扁藻的96h-EC50为9.32 mg·L-1,属高毒类污染物。青岛大扁藻经过BPA暴露处理后,细胞密度下降,细胞色素含量降低,并且呈现明显的剂量-效应关系;细胞抗氧化系统中超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)、谷胱甘肽还原酶(GR)活性均受到干扰。  相似文献   

8.
为探究双酚A(BPA)的氧化毒性,分别以剂量为20、40和80mg·kg~(-1)·d~(-1)的BPA对雄性昆明小鼠灌胃处理1周,并测定了小鼠体内活性氧自由基(ROS)水平、还原型谷胱甘肽(GSH)含量、丙二醛(MDA)含量和DNA-蛋白质交联系数(DPC)。与对照组相比,各BPA暴露组小鼠肝脏和肾脏细胞中的ROS生成量、MDA含量和DPC系数均升高,而GSH含量下降(P<0.05或P<0.01)。ROS生成量、GSH含量和DPC系数均显示出剂量-效应关系。研究表明,BPA可扰乱小鼠肝脏和肾脏细胞的氧化应激平衡,诱导细胞氧化损伤。  相似文献   

9.
Here we evidenced the photo-induced degradation of monolinuron, a phenylurea herbicide, through the 300–450 nm light excitation of nitrite and nitrate species. The degradation pathways were compared to those obtained under direct photolysis at 254 nm. When using NO3 and NO2 as photoinducers, hydroxyphenyl-substituted photodegradation products were found to be formed specifically through the involvement of OH° radicals. NO and NO2-phenyl substituted compounds were also observed as a result of the production of NO° and NO2° radicals. Half-lives of monolinuron in aqueous solutions were measured in various conditions of concentrations of substrate and inducer, oxygen content and pH.  相似文献   

10.
Bi2WO6 was synthesized with a hydrothermal method at different pHs and used for the degradation of tetracycline (TC) in water. The mesoporous Bi2WO6 prepared at pH 1 (BWO-1) displayed the highest adsorption and degradation capacity to TC due to its large surface area and more efficient capacity to separate photogenerated electrons and holes. 97% of TC at 20 mg·L?1 was removed by BWO-1 at 0.5 g·L?1 after 120 min irradiation under simulated solar light. Only 31% of the total organic carbon (TOC) was removed after 360 min irradiation although the TC removal reached 100%, suggesting that TC was mainly transformed to intermediate products rather than completely mineralized. The intermediates were identified by high-performance liquid chromatography-time of flight-mass spectrometry (HPLC-TOF-MS) and possible photodegradation pathways were proposed.  相似文献   

11.
The abiotic association between phthalic acid esters (PAEs) and humic substances (HS) in sludge landfill plays an important role in the fate and stability of PAEs. An equilibrium dialysis combined with 14C-labeling was used to study the abiotic association of two abundant PAEs (diethyl phthalate and di-n-butyl phthalate) with humic acid (HA) isolated from a sludge landfill with different stabilization times and different molecular weights. Elemental analysis and Fourier Transform Infrared Spectrophotometer (FTIR) suggested that high K A value of HA was related to the high aromatic content and large molecular weight of HA. The results indicated that the association strength of PAEs with HA depended on both the properties of the PAEs and the characteristics of HA. The K A values of the association were strongly dependent on solution pH, and decreased dramatically as the pH was increased from 3.0 to 9.0. The results suggested that nonspecific hydrophobic interaction between PAEs and HA was the main contributor to the association of the PAEs with HA. The interactive hydrogen-bonds between the HA and the PAEs molecules may also be involved in the association.  相似文献   

12.
Four fractions (A, B, C, and D) of humic acids (HAs) were separated based on the polarity from weak to strong. UV-vis absorption and Fourier transform infrared spectroscopy (FTIR) analysis show that the fractions C and Dpossessedmore aromatic C=C content. The influences of HAs and their fractions on the photolysis were investigated by the photodegradation of 2,4-D solutions under simulated solar light irradiation. The degradation rate of 2,4-D was found to decrease in the presence of bulk HAs or their fractions especially at high HAs concentration. The fractions of strong polarity C and D retarded the degradation rate more than the fractions of weak polarity A and B. This could be attributed to the different absorption intensity of the four HAs fractions in the order of D ? C > A > B, and the stronger π-π electron donor-acceptor interactions between the strong polar fractions and 2,4-D.  相似文献   

13.
The photolysis in water solution of three fungicides (Metalaxyl, Benalaxyl, and Furalaxyl) was studied under artificial light. At λ = 254 Benalaxyl and Furalaxyl underwent fast degradation with rearrangement reactions less complex than those of Metalaxyl. Under A = 254–290 the photolysis was very fast and Benalaxyl and Furalaxyl show a common behaviour. This was found to be a kinetic consecutive process leading, at first, to N‐2,6‐xylyl‐D,L‐alaninate (II), which was degraded to 2,6‐dimethylaniline (IV). This amine gives unknown products. Metalaxyl underwent a parallel/consecutive photodegradtion to give (II) and N‐(methoxyacetyl)‐2,6‐dimethylaniline (VI). While (II) was easily converted to (IV) as earlier, (VI) was more stable to photolysis. Under λ > 290 all the fungicides shown very slow degradation with pseudo first order rate constants. The photoproducts were degraded faster than the parent compounds by factors from 13 to 1800. The presence of photosensitizer in water (humic acids or acetone) resulted in total decomposition of fungicides and of their photoproducts.  相似文献   

14.
A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s?1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.  相似文献   

15.
The impact of bisphenol A (BPA) on Gammarus fossarum and Lumbriculus variegatus was studied in four artificial indoor streams (0, 5, 50 and 500?µg?L?1 BPA, nominal) over 103 days in a pulse–dose exposure scenario (weekly BPA application). For G. fossarum populations at day 103, the proportions of juveniles and of breeding females from the highest BPA treatment were in tendency reduced. For individually exposed gammarid pairs an EC10 of 17?µg?L?1 BPA (nominal) for the proportion of reproductive females in the fourth brood was determined. During the first three broods, the largest brood size occurred at the highest BPA concentration, whereas in the fourth brood it decreased concentration-dependently (fourth brood EC10?=?5?µg?L?1 BPA, nominal). Effects on L. variegatus were a reduced population growth (103?d-EC10 of 2?µg?L?1 BPA, nominal) and an increase in dry weight and the number of segments in large, complete worms.  相似文献   

16.
The photodegradation of the organophosphorus fenamiphos was studied in various clay matrices: montmorillonite, kaolin and the mineral components of two soils collected from two different sites: Settat (S) and Berrechid (B). The degradation was shown to be mainly due to the direct excitation of fenamiphos and was similar for all the matrices with a two-step kinetics : a fast and a slower one. The first step rate obtained at the surface of montmorillonite was slightly lower than that determined at the surface of kaolin. The fenamiphos degradation process clearly depended on the amount of humic substances and iron(III). The latter component accelerated the disappearance of fenamiphos, while humic substances clearly inhibited the process. The degradation rate increased in the presence of water and was mainly due to the involvement of the photohydrolysis process leading to the scission of the P–O bond. The formation of the main by-products, sulfoxide, sulfone and phenol derivatives, were elucidated by HPLC/MS.  相似文献   

17.
Bo Lü 《毒物与环境化学》2013,95(9):1729-1733
The effects of bisphenol A (BPA) were examined on sex hormones of F1 generation male rats during weaning period. Female rats were exposed to BPA from day 0 after pregnancy to the weaning period at doses of 50, 100, or 200 mg kg?1. The sex hormone levels of F1 generation male rats were determined. This study shows that F0 generation female rats fed with 200 mg kg?1 BPA had a significantly higher serum prolactin (PRL) levels at the end of weaning. Significantly higher levels of serum estradiol (E2) were also found in female rats fed 100 or 200 mg kg?1 BPA. Serum levels of E2 in F1 male generation rats were higher in treatment groups compared to control groups while serum testosterone (T) levels were lower. Follicle stimulating hormone (FSH) in F1 generation rats fed 200 mg kg?1 was markedly decreased. The relative testicular weights were significantly less in 100 and 200 mg kg?1 BPA groups. BPA was found to alter the sex hormone levels in F1 male rats during weaning period and thus disrupted endocrine functions.  相似文献   

18.
Abstract

A metal-organic framework of iron-doped copper 1,4-benzenedicarboxylate was synthesized and, for the first time, utilized as a heterogeneous photo-Fenton catalyst for degradation of methylene blue dye in aqueous solution under visible light irradiation. The synthesized materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The influence factors, kinetics, and stability of the synthesized catalysts were investigated in detail. Iron-doped copper 1,4-benzenedicarboxylate showed higher degradation efficiency than pure copper 1,4-benzenedicarboxylate. An almost complete degradation was achieved within 70?min under visible light irradiation at a solution pH of 6, a catalyst loading of 1?g?L?1, a H2O2 dosage of 0.05?mol L?1 and methylene blue concentration of 50?mg?L?1. Recycling studies demonstrated that the iron-doped copper 1,4-benzenedicarboxylate is a promising heterogeneous photo-Fenton catalyst for long-term removal of methylene blue dye from industrial wastewater.  相似文献   

19.
The photocatalytic oxidation of humic substances in aqueous solutions and natural waters with TiO2 attached to buoyant, hollow glass micro-spheres was studied. A maximum oxidation efficiency of 3.6 mg W–1 h–1 was achieved in neutral or alkaline media at a plane surface concentration of the catalyst attached to the micro-spheres of 25 g m–2. Proceeding by different mechanisms in acidic and alkaline media, the photocatalytic oxidation efficiency did not benefit from an excessive presence of hydroxyl radical promoters, hydrogen peroxide and alkali.  相似文献   

20.
In order to provide basic data for practical application, photodegradation experiment of N-nitrosodimethylamine (NDMA) in aqueous solution was carried out with a low-pressure Hg lamp. Effects of the initial concentration of NDMA, solution pH, dissolved oxygen, and the presence of humic acid on NDMA photodegradation were investigated. NDMA at various initial concentrations selected in this study was almost completely photodegraded by UV irradiation within 20 min, except that at 1.07 mmol/L, NDMA could be photodegraded almost completely in the acidic and neutral solutions, while the removal efficiency decreased remarkably in the alkaline solution. Dissolved oxygen enhanced the NDMA photodegradation, and the presence of humic acid inhibited the degradation of NDMA. Depending on the initial concentration of NDMA, NDMA photodegradation by UV obeyed the pseudo-first-order kinetics. Dimethylamine, nitrite, and nitrate were detected as the photodegradation products of NDMA. 1O2 was found to be the reactive oxygen species present in the NDMA photodegradation process by UV, based on the inhibiting experiments using tert-butanol and sodium azide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号