首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
选择三江平原小叶章湿地不同水分带上草甸沼泽土和腐殖质沼泽土2种土壤类型作为研究对象,以KNO3为示踪剂,模拟研究硝态氮在湿地土壤中的水平运移过程。结果表明,2种土壤各土层硝态氮水平运移浓度和速率均与运移距离呈极显著负相关(P〈0.01),并随运移距离增加呈一阶指数衰减曲线变化,各土层硝态氮水平运移速率主要受浓度梯度、水势梯度及土壤基质势的控制;土壤各土层中硝态氮水平运移速率与土壤含水量呈显著正相关(P〈0.05),并随土壤含水量增加呈指数增长曲线变化;土壤各土层中硝态氮水平运移浓度与土壤水分扩散率呈极显著正相关(P〈0.01),0—20cm土层硝态氮水平运移浓度随水分扩散率升高呈Boltzmann曲线变化,其他土层则呈指数增长曲线变化;草甸沼泽土比腐殖质沼泽土相应土层更利于硝态氮的水平运移,这主要与土层颗粒组成和孔隙度等物理性质的显著差异有关,而湿地水文条件可能对2种土壤物理性质的塑造有着重要影响。  相似文献   

2.
Field experiments were done in two sites, Yixing and Changshu, Jiangsu province, China, to study P movement and leaching in flooded paddy soils. P movement in soil was investigated by using the KH2 32PO4 tracker method, and the amount of P leached from the soil layer in different depths was estimated by measuring P concentrations in the soil solution and saturated hydraulic conductivities in field. Determination was done about one month after P application. There was 46% and 42% of total 32P retained in the 0–5cm layer of soil in the Yixing site and in the Changshu site respectively. The 32P retained in the 25–30 cm layer was only about 1–2% of the total 32P added. Furthermore, 8.01% of 32P in the soil of Yixing site and 16.8% of 32P in the soil of Changshu site was lost from the layer 0–30cm soil. The seasonal amounts of P leached from the top soil layer and from bottom layer are about 4.5–5.8% and 1.6–2.1% of the total P application, respectively. Changes of total P concentrations in soil solutions during rice growth showed that the fertilizer P applied before flooding of the paddy fields suffered a flash leaching loss and a slow leaching loss. We concluded that the fertilizer P could quickly move in the flooded paddy rice field and parts of it can enter into surface water and ground water. Unless the P application is well managed the risk of P loss and consequently environmental pollution exist.  相似文献   

3.
The anaerobic microbial uptake of alanine and aspartic acid was determined in 4 diverse salt-marsh soils (tall and short Spartina alterniflora, creek bank, and mud flat). Uptake in soil slurries was determined by the radioisotopic tracer technique at one substrate concentration (<250 pmoles cm-3). Dissolved free alanine and aspartic acid concentrations in the interstitial nutrient pool ranged from approximately 1 to 500 pmoles cm-3. In the short S. alterniflora soil, maximum microbial uptake of alanine was found at a depth of 10 cm (8.32 pmoles cm-3 h-1); in the tall S. alterniflora soil maximum uptake was at 20 cm (23.4 pmoles cm-3 h-1). The utilization of aspartic acid appeared constant over the depth interval investigated (0 to 60 cm). The turnover times of alanine and aspartic acid in the tall and short S. alterniflora soils ranged from 5 to 25 h and 40 to 100 h, respectively. The percent of the labeled alanine and aspartic acid taken up that was mineralized by tall and short s. alterniflora microbenthos ranged from 20 to 50% and 5 to 20%, respectively.  相似文献   

4.
Measurements of calcium carbonate contents in soils were performed with FT-IR (Fourier transform infrared) spectroscopy and with the gas volumetric Scheibler method. To the authors’ knowledge it is the first time that carbonate was quantified in soil samples by FT-IR spectroscopy. The carbonate contents of the test soils ranged from 11.3 to 13.1%. Both methods gave similar results, however, results obtained from FT-IR spectra depend on the spectral band used for the carbonate determination. In our investigation we used the bands at 875 and 2506 cm−1. In case of the band at 2506 cm−1 the difference between FT-IR and Scheibler method was a factor of 1.56, in case of 875 cm−1 the respective factor was 1.16. It can be concluded that FT-IR with both bands has a potential to be used in practice as substitution of the Scheibler method. The advantages of the FT-IR method are better reproducibility and the simultaneous characterization of soil organic matter in bulk samples. The disadvantage is its higher cost.  相似文献   

5.
Flooding of wetland or agricultural soils can result in substantial alteration of the pore water trace metal profiles and potentially also influence the bioavailability of other trace elements adsorbed to the insoluble oxides. Experimental microcosms were used to quantify the impact of rice (Oryza sativa) plants across an entire growing cycle on the concentrations of Mn2+ and Fe2+ in two soil types (red sodosol and grey vertosol). Two water management treatments were included: a standard flooded treatment and a saturated treatment (?3?kPa). Soil pore water profiles were established from samples collected at four sampling depths (2.5, 7.5, 15 and 25?cm) on 50 occasions. Fe2+ and Mn2+ concentrations were higher in flooded soil than in saturated soil and greatest at a depth of 7.5?cm. The presence of rice plants increased Mn2+ concentrations in flooded soils, but tended to decrease Mn2+ concentrations in saturated soils. The influence of rice plants on Fe2+ concentrations was greatest at a depth of 7.5?cm. Changes in soil pore water Fe2+ and Mn2+ concentrations due to the presence of rice plants were correlated with flowering and reproduction.  相似文献   

6.
The bioavailability of arsenic (As) in the soil environment is largely governed by its adsorption–desorption reactions with soil constituents. We have investigated the sorption–desorption behaviour of As in four typical Bangladeshi soils subjected to irrigation with As-contaminated groundwater. The total As content of soils (160 samples) from the Laksham district ranged from <0.03 to approximately 43 mg kg−1. Despite the low total soil As content, the concentration of As in the pore water of soils freshly irrigated with As-contaminated groundwater ranged from 0.01 to 0.1 mg l−1. However, when these soils were allowed to dry, the concentration of As released in the pore water decreased to undetectable levels. Remoistening of soils to field moisture over a 10-day period resulted in a significant (up to 0.06 mg l−1) release of As in the pore water of soils containing >10 mg As kg−1 soil, indicating the potential availability of As. In soils containing <5 mg As kg−1, As was not detected in the pore water. A comparison of Bangladeshi soils with strongly weathered long-term As-contaminated soils from Queensland, Australia showed a much greater release of As in water extracts from the Australian soils. However, this was attributed to the much higher loading of As in these Australian soils. The correlation of pore water As with other inorganic ions (P, S) showed a strongly significant (P < 0.001) relationship with P, although there was no significant relationship between As and other inorganic cations, such as Fe and Mn. Batch sorption studies showed an appreciable capacity for both AsV and AsIII sorption, with AsV being retained in much greater concentrations than AsIII.  相似文献   

7.
磷石膏改善苏打碱土理化性质效果分析   总被引:2,自引:0,他引:2  
分析了磷石膏对苏打碱土团聚体稳定性、饱和导水率和盐分淋洗效果的影响.结果表明:水稳定大团聚体质量分数和饱和导水率均随磷石膏施用量的逐渐增加而不断提高,磷石膏施用量达到100%GR时,水稳性大团聚体质量分数从对照的0.03%增加到33.31%,饱和导水率从对照的0.13 mm·d~(-1)提高到3.14 mm·d~(-1);出流液电导率和pH均随磷石膏施用量的增加而降低,磷石膏施用量达到100%GR时,出流液电导率和pH分别从对照的8.85 mS·cm~(-1)和10.26降低到3.46mS·cm~(-1)和9.83.因此,磷石膏对苏打碱土理化性质的改良效果十分显著.  相似文献   

8.
Sorption and leaching behavior of hexaconazole in four different soils (alluvial, red, laterite, and black) was studied using a batch equilibration technique. The values of the Freundlich adsorption constant 1/nads ranged from 0.75 to 0.85 for all four soils, showing strong non-linear behavior. Upon stepwise desorption with CaCl2 solution (10 mmol·L?1), release of hexaconazole was maximum with the first elution, the amount decreasing with each subsequent one. The leaching behavior under saturated flow conditions was also studied with soil columns packed in polythene tubes. The mobility of hexaconazole was maximum in sandy loam and minimum in black soil.  相似文献   

9.
Effective cropland reclamation planning must be based upon an understanding of the soil characteristics and properties that contribute to the development of productive soils. Effective use of available soil and overburden materials require the utilization of all available knowledge about processes that cause changes in soil properties. Adequate premine characterization of soil and overburden materials is a prerequisite for good planning. Proper postmine topographic design is critical for maximizing water infiltration and retention. Topsoil must be replaced on all reclaimed soils, but the depth of replacement of subsoil depends upon the texture and soluble salt and/or sodium content of the underlying spoil. Reclamation success should be evaluated by relating yields to properties of the reclaimed soils; comparison with yields from nearby reference areas of undisturbed soils is not an acceptable method.Contribution from Land Reclamation Research Center, North Dakota State University, Mandan.Superintendent and Research Associates, respectively.  相似文献   

10.
A novel extraction method was established to determine the water-extractable (available) content of sulfamethoxazole (SMX) in soil. The SMX imprinted polymers (MIPs) were synthesised and the performance was evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy and binding experiments. Results showed that the MIPs exhibited good selectivity for SMX, so the MIPs were applied as a sorbent. SMX in soil was extracted by water, sorbed from the extract to MIPs and analysed with a high performance liquid chromatography (HPLC) after its desorption from MIPs. Meanwhile, the classic organic solvent extraction was employed to measure the total SMX content in soil. Results showed that when SMX level in spiked soils varying from 1.0–500?μg?kg?1, the observed recoveries of available SMX contents ranged from 63.27?±?3.11% to 82.11?±?2.77% (n?=?3), while the total SMX varied between 89.59?±?1.65% and 97.64?±?3.92% (n?=?3). The detection limit of the developed method for SMX in soils was 0.05?μg?kg?1. Available SMX contents in five field soil samples ranged from 0.13 to 4.14?μg?kg?1, which were only 0.35–25.40% of the respective total SMX contents. Results from this study manifest the importance of the extents of SMX immobilisation with different soils for assessing SMX's ecological and human health risks.  相似文献   

11.
中国南方稻田土壤汞含量及潜在危害评价   总被引:1,自引:0,他引:1  
选择我国南方水稻主产区安徽、浙江、湖南、湖北以及广西5个省,采集213个稻田土壤样品,探究我国南方稻田土壤中汞的空间分布特征与土壤理化参数(如p H值和有机质)的相关关系及汞富集的潜在危害。结果表明:不同省份的稻田土壤汞含量存在显著的差异(P0.05,n=213),含量范围是0.029~0.326 mg·kg~(-1)(干重),平均值为(0.094±0.036)mg·kg~(-1),与农用地土壤环境质量标准0.30 mg·kg~(-1)(GB15618—1995)相比,除湖北省以外均有轻度汞污染。Pearson相关性分析表明,稻田土壤中的汞含量与有机质含量呈显著正相关关系(P0.01,r=0.445),说明适度偏高的有机质有利于土壤汞的富集。不同省份稻田土壤潜在危害等级除浙江省外均在轻微到中等的范围内,浙江省的为强等级。  相似文献   

12.
The levels of extractable aluminum (Al) in soils of tea plantations, Al concentrations in tea leaves and the impact of nitrogen fertilization on these two parameters were investigated. In addition, the properties of soils from tea plantations were compared to those from soils of adjacent non-tea fields to evaluate the effect of land use conversion (from non-tea soils to tea soils). Exchangeable Al (extracted in 1 mol l−1 KCl) ranged from 0.03 to 7.32 cmolc kg−1 in 94 tea fields and decreased rapidly with increasing soil pH. In comparison with non-tea soils, tea soils had a significantly lower pH and exchangeable Mg2+ concentration but higher organic matter contents and exchangeable K+ concentration. Contents of extractable Al were not different (P > 0.05) between these two soils. The concentrations of Al in mature tea leaves correlated significantly with exchangeable Al in soil samples taken at a depth of 20–40 cm and with exchangeable Al saturations in soil sampled at␣depths of 0–20 and 20–40 cm. In the pot experiment, nitrogen fertilization significantly increased extractable Al levels but decreased soil pH and the levels of exchangeable base cations. Nevertheless, the levels of Al in mature leaves and young shoots were significantly reduced by the application of large amounts of N fertilizer.  相似文献   

13.
Part IIA of the Environmental Protection Act 1990 requires environmental regulators to assess the risk of contaminants leaching from soils into groundwater (DETR, 1999). This newly introduced legislation assumes a link between soil and groundwater chemistry, in which rainwater leaches contaminants from soil into the saturated zone. As the toxicity of both groundwater and overlying soils is dependent upon the chemicals present, their partitioning and their bioavailability, similar patterns of soil, leachates and groundwater toxicity should be observed at contaminated sites. Soil and groundwater samples were collected from different contaminated land sites in an urban area, and used to determine relationships between soil chemistry and toxicity, mobility of contaminants, and groundwater chemistry and toxicity. Soils were leached using water to mimic rainfall, and both the soils and leachates tested using bioassays. Soil bioassays were carried out using Eisenia fetida, whilst groundwater and leachates were tested using the Microtox test system and Daphnia magna 48 h acute tests. Analysis of the bioassay responses demonstrated that a number of the samples were toxic to test organisms, however, there were no significant statistical relationships between soil, groundwater and leachate toxicity. Nor were there significant correlations between soil, leachates and groundwater chemistry.  相似文献   

14.
Polychlorinated biphenyls (PCBs) were determined in surface soil samples from Zhejiang Province, east China. Concentrations of total PCBs ranged widely from 7.50 to 263 ng kg−1 with a mean value of 45.4 ng kg−1 (dry matter basis). In general, concentrations in soil samples from the southern part of the test area and especially from some sites near hills tended to be higher than those from other sites. The prevailing winds may have been the main factor influencing the spatial distribution of PCBs in soils. Other factors may have included the distribution of residential areas and land use variables. In this paper we also discuss the relationships between OCPs and PCBs in soils and relationships between these and land use variables as revealed by correlation analysis.  相似文献   

15.
Field experiments were done in two sites, Yixing and Changshu, Jiangsu province, China, to study P movement and leaching in flooded paddy soils. P movement in soil was investigated by using the KH2 32PO4 tracker method, and the amount of P leached from the soil layer in different depths was estimated by measuring P concentrations in the soil solution and saturated hydraulic conductivities in field. Determination was done about one month after P application. There was 46% and 42% of total 32P retained in the 0-5cm layer of soil in the Yixing site and in the Changshu site respectively. The 32P retained in the 25-30 cm layer was only about 1-2% of the total 32P added. Furthermore, 8.01% of 32P in the soil of Yixing site and 16.8% of 32P in the soil of Changshu site was lost from the layer 0-30 cm soil. The seasonal amounts of P leached from the top soil layer and from bottom layer are about 4.5-5.8% and 1.6-2.1% of the total P application, respectively. Changes of total P concentrations in soil solutions during rice growth showed that the fertilizer P applied before flooding of the paddy fields suffered a flash leaching loss and a slow leaching loss. We concluded that the fertilizer P could quickly move in the flooded paddy rice field and parts of it can enter into surface water and ground water. Unless the P application is well managed the risk of P loss and consequently environmental pollution exist.  相似文献   

16.
崇明岛新围垦区不同土地利用条件下的土壤呼吸研究   总被引:3,自引:0,他引:3  
土地利用方式是影响温室气体减排的关键因子之一。新围垦土地因其土壤本底均一、土地利用历史简单短暂,使得评价短期土地利用对温室气体排放的影响成为可能。为此,在崇明东滩湿地新围垦区选取了本底均匀、利用历史简单的几种土地利用类型(旱田、水旱轮作农田、人工林带),研究其土壤呼吸的变化及其与土壤环境间的关系,以期评价其各自的固碳和温室气体减排潜力。研究表明,2009年整个春季,土壤呼吸速率强度的顺序为水旱轮作[(0.30±0.08)mol.m-2.d-1]〉旱田[(0.18±0.04)mol.m-2.d-1]〉林带[(0.09±0.01)mol.m-2.d-1];春季各月份,水旱轮作田土壤呼吸速率变化波动较大,旱田较平稳,4、5月份最先达到日最高值,人工林带最为平稳,且始终具有较低的呼吸强度;旱田土壤呼吸速率均不能简单用土壤5 cm处温度及湿度进行解释,林带与水旱轮作田土壤呼吸速率与土壤5 cm处温度显著相关(P〈0.05);整个春季,林带土壤呼吸与5 cm处温度及湿度均显著相关,其中与温度极显著相关(P=0.01),水旱轮作田与旱田的土壤呼吸速率与两者均不相关。  相似文献   

17.
Turnover rates of soil carbon for 20 soil types typical for a 3.7 million km2 area of European Russia were estimated based on 14C data. The rates are corrected for bomb radiocarbon which strongly affects the topsoil 14C balance. The approach is applied for carbon stored in the organic and mineral layers of the upper 1 m of the soil profile. The turnover rates of carbon in the upper 20 cm are relatively high for forest soils (0.16–0.78% year−1), intermediate for tundra soils (0.25% year−1), and low for grassland soils (0.02–0.08% year−1) with the exception of southern Chernozems (0.32% year−1). In the soil layer of 20–100 cm depth, the turnover rates were much lower for all soil types (0.01–0.06% year−1) except for peat bog soils of the southern taiga (0.14% year−1). Combined with a map of soil type distribution and a dataset of several hundred soil carbon profiles, the method provides annual fluxes for the slowest components of soil carbon assuming that the latter is in equilibrium with climate and vegetation cover. The estimated carbon flux from the soil is highest for forest soils (12–147 gC/(m2 year)), intermediate for tundra soils (33 gC/(m2 year)), and lowest for grassland soils (1–26 gC/(m2 year)). The approach does not distinguish active and recalcitrant carbon fractions and this explains the low turnover rates in the top layer. Since changes in soil types will follow changes in climate and land cover, we suggest that pedogenesis is an important factor influencing the future dynamics of soil carbon fluxes. Up to now, both the effect of soil type changes and the clear evidence from 14C measurements that most soil organic carbon has a millennial time scale, are basically neglected in the global carbon cycle models used for projections of atmospheric CO2 in 21st century and beyond.  相似文献   

18.
PAHs could be transported to Tibetan Plateau in accompany with atmospheric circulation. The forest regions were found be an important sink for PAHs, while their distributions and migrations in forest are still uncertain. In this study, soil profile samples were collected in southeastern Tibet and the concentrations, distributions, and migration of PAHs in forest region were investigated. The PAHs levels in the forest soils were at the low end of remote sites, ranged from 27.4 to 120.3 ng g?1 on a dry weight based. Due to low ambient temperature and high organic carbon content, enrichment of PAHs was found in higher altitude on north side. According to the soil profiles, the vertical distributions of PAHs in organic layers were mainly influenced by pedogenesis, while the vertical distributions in mineral layers were dominated by downward leaching effect. Enrich factor (EF) of PAHs was estimated, and the values in organic layers were positively correlated with the octanol–air partition coefficients (K OA), but EFs in mineral layers decreased with the K OA values. PAHs in the surface soils on the north side of forest were relatively stable, while the migration of PAHs on the south sides and other clearing sites was more active. The leaching rates of PAHs in clearing site ranged between 1.42 and 29.3%. The results from this study are valuable on the characterization of PAHs in Tibetan Plateau.  相似文献   

19.
A possible contamination of water resources by the application of pesticides is a problem confronting many irrigated areas in arid and semi-arid areas. The best management practices have to be adopted to minimize pesticide transport and leaching under irrigated conditions. Atrazine dissipation in loam and sandy loam soils has been tested in the laboratory using disturbed soil columns under saturated flooding conditions. All the experiments were performed in replicates. The chloride transport was also studied to test its behavior as an inert tracer in both the soils. Atrazine and chloride breakthrough curves were analyzed with the parameter optimization program CXTFIT to determine transport parameters including pore-water velocity (v), retardation coefficient (R), hydrodynamic dispersion coefficient (D), and pulse duration (t o ). The pore-water velocity and pulse duration of the solute were estimated from the experimental conditions and kept constant during the optimization procedure. The results indicated that the R of chloride was not significantly different from 1, indicating that chloride is an inert tracer for the types of soil tested in this study. The average R of atrazine was 4.56 and 3.15 for sandy loam and loam soils, respectively. Results also showed that the hydrodynamic dispersion coefficient was much higher in the case of sandy loam soil compared to the loam soil for the two solutes, thus indicating non-equilibrium transport conditions. In the case of chloride, D increased from 0.4 for the loam soil to 16.2?cm2/min for the sandy loam soil. Similar results were observed in the case of atrazine in which D for the sandy loam soil was 60% higher than that for the loam soil. More atrazine leaching is expected under field conditions due to the presence of soil cracks and macropores.  相似文献   

20.
Fertile soils in the River Neretva estuary were developed by fluvial sedimentation and deposition of the eroded soil material from the karst hills within the catchment. After extensive reclamation, two reclaimed land zones (fluvial terraces and lower-laying terraces) have been delineated, both used for agriculture. The main objectives of this study were to evaluate soil chemical and geochemical properties in reclaimed zones that differ mainly in topography, soil types and agricultural land use. The origin of the trace metals in the arable soils was studied using multivariate statistics, and interpolation maps of trace metals were produced using GIS and geostatistics. Soil trace metal concentrations do not exceed a threshold value established by the Croatian Government regulation, with exception of copper. Comparative analysis of the main soil properties and trace metal concentrations in the study area showed a pronounced spatial variation and differences between two reclaimed zones in soil organic matter content, bioavailable P and total concentrations of Cd and Cu. Factor analysis in the area of the lower-laying terraces showed grouping of bioavailable P and K, organic matter content and pH (negative loading) in the component associated mostly with the land use. In the area of the fluvial terraces, bioavailable P and total Cd were grouped in the same component that may be explained by the traditional small farm agriculture and overuse of mineral fertilizers. In the whole study area, processes of secondary salinization were determined, accompanied by the raised chloride and sodium concentration measured in the saturation soil extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号