首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
糖精钠生产废水的铁氧体法除铜研究   总被引:5,自引:0,他引:5  
对糖精钠生产废水实施铁置换法除铜后,废水中仍含有较高浓度的Cu^2+。本研究进一步以铁氧体法除铜。试验条件下,Cu62+的去除率达98%T以上,出水Cu^2+浓度低于2.5mg/L。通过正交试验,找出最佳工艺及操作参数,从而为该类废水的预处理设计及运行管理提供屯依据。  相似文献   

2.
铁屑法处理含染料废水中铁屑表面化学研究   总被引:5,自引:0,他引:5  
陈灿  施汉昌 《环境化学》2004,23(1):90-95
采用扫描电镜和X射线光电子能谱技术对铁屑法处理含染料废水中铁屑反应前后的表面进行了研究,结果表明:铁屑表面主要由Fe,C,O,S,Si以及其它构成铸铁的微量元素等组成.铁屑表面快速氧化是染料脱色的关键和前提步骤,铁屑表面铁的羟基氧化物增多是铁屑失活的重要原因.超声方法是铁屑再生方法之一,铸铁中的硫有助于染料脱色.  相似文献   

3.
Abstract

A metal-organic framework of iron-doped copper 1,4-benzenedicarboxylate was synthesized and, for the first time, utilized as a heterogeneous photo-Fenton catalyst for degradation of methylene blue dye in aqueous solution under visible light irradiation. The synthesized materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The influence factors, kinetics, and stability of the synthesized catalysts were investigated in detail. Iron-doped copper 1,4-benzenedicarboxylate showed higher degradation efficiency than pure copper 1,4-benzenedicarboxylate. An almost complete degradation was achieved within 70?min under visible light irradiation at a solution pH of 6, a catalyst loading of 1?g?L?1, a H2O2 dosage of 0.05?mol L?1 and methylene blue concentration of 50?mg?L?1. Recycling studies demonstrated that the iron-doped copper 1,4-benzenedicarboxylate is a promising heterogeneous photo-Fenton catalyst for long-term removal of methylene blue dye from industrial wastewater.  相似文献   

4.
Microwave processing was used to stabilize copper ions in soil samples. Its effects on the stabilization efficiency were studied as a function of additive, microwave power, process time, and reaction atmosphere. The stabilization efficiency of the microwave process was evaluated based on the results of the toxicity characteristic leaching procedure (TCLP) test. The results showed that the optimal experimental condition contained a 700W microwave power, 20 min process time and 3 iron wires as the additive, and that the highest stabilization efficiency level was more than 70%. In addition, the different reaction atmospheres showed no apparent effect on the stabilization efficiency of copper in the artificially contaminated soil. According to the result of the Tessier sequential extraction, the partial species of copper in the contaminated soil was deduced to transform from unstable species to stable states after the microwave process.  相似文献   

5.
The performance of a wastewater treatment plant was assessed statistically using multivariate cluster and principle component analysis. This was after measuring some physico-chemical properties in the influent, effluent, downstream, and upstream waters over a 4-month period. The cluster analysis grouped the sampling sites into three clusters: relatively non-polluted (upstream), medium polluted (downstream), and polluted (influent and effluent). The polluted water was further subdivided into very highly (influent) and highly (effluent) polluted. The grouping of influent and effluent into one cluster was due to some water quality parameters such as amount of copper, lead, and phosphates that are not efficiently removed by the plant. Using principal component analysis, samples from the same site taken over a period of 4 months were scattered, indicating inconsistencies in the performance of the plant. This was more pronounced during the rainy season, suggesting that increased water volumes from open sewers make the already poorly performing plant worse. The major loading factors found by principle component analysis were phosphate, lead, iron, zinc, copper, pH, and conductivity. Generally, the wastewater treatment system was found to be efficient in removing heavy metals and these were found in the sludge, but not anions. The mean percentage metal removal could be arranged in the following decreasing order: iron (85%)?>?zinc (57%)?>?copper (40%) and lead (38%) following the concentrations (mg?kg?1) found in the sludge: iron (11,300)?>?zinc (820)?>?copper (180)?>?lead (20)?>?cadmium (3). Phosphate and iron concentrations in the effluent were found to be above the South African Bureau of Standards (SABS) recommendations. The major cause of poor performance is the high volume of the wastewater, exceeding the capacity of the plant 10 times.  相似文献   

6.
Dye wastewater is a major source of toxic aromatic amines released into the environment. Semiconductor photocatalysis is a clean, solar-driven process for the treatment of dye wastewater. To enhance applicability of semiconductor photocatalysis, the catalyst used should be visible light active. Here we report a facile synthesis of a highly visible-light-active nitrogen-doped tungsten oxide, N-WO3, by thermal decomposition of peroxotungstic acid–urea complex. The structure and properties of N-WO3 are characterized by X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy. The photodegradation of amaranth catalyzed by N-WO3 is evaluated in a batch system under visible and ultraviolet A (UVA) light. Our results show successful doping of N in both interstitial and substitutional sites and the presence of N2-like species. The N doping surprisingly expands the usable portion of the solar spectrum up to the near-infrared region and enhances the photocatalytic activity. At typical experimental conditions such as 25 mg/L of amaranth, 1 g/L of N-WO3, and pH 7, 100 % degradation of amaranth is achieved within 2 h under both visible and UVA light. The photocatalytic activity of N-WO3 is maintained in repeated cycles, indicating its exceptional photostability. To the best of our knowledge, this is the first time that a reusable, highly visible-light-active N-WO3 can be obtained through thermal decomposition of peroxotungstic acid–urea complex.  相似文献   

7.
This article reports the first use of coupled electrocoagulation and electro-Fenton (EF-EC) to clean domestic wastewater. Domestic wastewater contains high amounts of organic, inorganic and microbial pollutants that cannot be usually treated in a single step. Here, to produce an effluent suitable for discharge in a single process step, a hybrid process combining electrocoagulation and electro-Fenton was simultaneously used to decrease chemical oxygen demand (COD), turbidity and total suspended solids (TSS) from domestic wastewater. The electrocoagulation–electro-Fenton process was firstly tested for the production of H2O2 using Ti–IrO2 and vitreous carbon- or graphite electrodes arranged at the anode and the cathode, respectively. The concentration of H2O2 recorded at 1.5 A of current intensity during 60 min of electrolysis using vitreous carbon- and graphite electrodes at the cathode was 4.18 and 1.62 mg L?1, respectively. By comparison, when the iron electrode was used at the anode, 2.05 and 1.06 mg L?1 of H2O2 were recorded using vitreous carbon and graphite, respectively. The H2O2 concentration decrease was attributed to hydroxyl radical formation generated by the Fenton reaction. Electro-Fenton using iron electrode at the anode and vitreous carbon at the cathode with a current density imposed of 0.34 A dm?2 ensures the removal efficiency of 50.1 % CODT, 70.8 % TSS and 90.4 % turbidity. The electrocoagulation–electro-Fenton technique is therefore a promising secondary treatment to simultaneously remove organic, inorganic and microbial pollutants from domestic, municipal and industrial wastewaters.  相似文献   

8.
Adding iron salt or iron hydroxide to sludgemixed liquor in an aeration tank of a conventional activated sludge processes (bioferric process) can simultaneously improve the sludge’s filterability and enhance the system’s treatment capacity. In view of this, Fe(OH)3 was added to a submerged membrane bioreactor (SMBR) to enhance the removal efficiency and to mitigate membrane fouling. Bioferric process and SMBR were combined to create a novel process called Bioferric-SMBR. A side-by-side comparison study of Bioferric-SMBR and common SMBR dealing with dyeing wastewater was carried out. Bioferric-SMBR showed potential superiority, which could enhance removal efficiency, reduce membrane fouling and improve sludge characteristic. When volumetric loading rate was 25% higher than that of common SMBR, the removal efficiencies of Bioferric-SMBR on COD, dye, and NH4 +-N were 1.0%, 9.5%, and 5.2% higher than that of common SMBR, respectively. The trans-membrane pressure of Bioferric-SMBR was only 36% of that in common SMBR while its membrane flux was 25% higher than that of common SMBR. The stable running period in Bioferric-SMBR was 2.5 times of that in common SMBR when there was no surplus sludge discharged. The mixed liquor suspended solids concentration of Bioferric-SMBR was higher than that of common SMBR with more diversified kinds of microorganisms such as protozoans and metazoans. The mean particle diameter and specific oxygen uptake rate of Bioferric-SMBR were 3.10 and 1.23 times the common SMBR, respectively.  相似文献   

9.
Perfluoroalkyl and polyfluoroalkyl substances are occurring in consumer and industrial products. They have been found globally in the aquatic environment including drinking water sources and treated wastewater effluents, which has raised concern of potential human health effects because these substances may be bioaccumulative and extremely persistent. The saturated carbon–fluorine bonds of the substances make them resistant to degradation by physical, chemical, and biological processes. There is therefore a need for advanced remediation methods. Iron-based methods involving high-valent compounds are appealing to degrade these substances due to their high oxidation potentials and capability to generate environmentally friendly by-products. This article presents for the first time the oxidation ability of tetraoxy anions of iron(V) (FeVO4 3?, Fe(V)), and iron(IV) (FeIVO4 4?, Fe(IV)), commonly called ferrates, in neutral and alkaline solutions. Solid compounds of Fe(V) (K3FeO4) and Fe(IV) (Na4FeO4) were added directly into buffered solution containing perfluorooctansulfonate and perfluorooctanoic acid at pH 7.0 and 9.0, and mixed solutions were subjected to analysis for remaining fluoro compounds after 5 days. The analysis was performed by liquid chromatography–mass spectrometry/mass spectrometry technique. Fe(IV) showed the highest ability to oxidize the studied contaminants; the maximum removals were 34 % for perfluorooctansulfonate and 23 % for perfluorooctanoic acid. Both Fe(V) and Fe(IV) had slightly higher tendency to oxidize contaminants at alkaline pH than at neutral pH. Results were described by invoking reactions involved in oxidation of perfluorooctansulfonate and perfluorooctanoic acid by ferrates in aqueous solution. The results demonstrated potentials of Fe(V) and Fe(IV) to degrade perfluoroalkyl substances in contaminated water.  相似文献   

10.
We studied the effect an oxidizing treatment of a lignocellulosic substrate, extracted from wheat bran, on the sorption of Cu and Zn. Oxidizing agents, such as potassium permanganate (KMnO4) or sodium periodate (NaIO4), creates oxygenated functions, e.g. alcohol and carboxylic acid, which increase the density of functional sites and the binding capacity of lignocellulose towards copper and zinc. We found that the treatment with KMnO4 is the most efficient, with an increase of about 30–40% metal ion binding, compared to 15–25% using NaIO4. The investigation of the oxidation process shows that the efficiency of KMnO4 can be attributed to its affinity towards insaturated double bonds of lignin entities. Oxidized lignocellulose is thus a promising, efficient, and cheap biomaterial for the decontamination of wastewater.  相似文献   

11.
Poly(hydroxamic acid)-poly(amidoxime) chelating ligands were synthesized from poly(methyl acrylate-co-acrylonitrile) grafted acacia cellulose for removing toxic metal ions from industrial wastewaters. These ligands showed higher adsorption capacity to copper (2.80 mmol?g−1) at pH 6. In addition, sorption capacities to other metal ions such as iron, zinc, chromium, and nickel were also found high at pH 6. The metal ions sorption rate (t1/2) was very fast. The rate of adsorption of copper, iron, zinc, chromium, nickel, cobalt, cadmium and lead were 4, 5, 7, 5, 5, 8, 9 and 11 min, respectively. Therefore, these ligands have an advantage to the metal ions removal using the column technique. We have successfully investigated the known concentration of metal ions using various parameters, which is essential for designing a fixed bed column with ligands. The wastewater from electroplating plants used in this study, having chromium, zinc, nickel, copper and iron, etc. For chromium wastewater, ICP analysis showed that the Cr removal was 99.8% and other metal ions such as Cu, Ni, Fe, Zn, Cd, Pb, Co and Mn removal were 94.7%, 99.2%, 99.9%, 99.9%, 99.5%, 99.9%, 95.6% and 97.6%, respectively. In case of cyanide wastewater, the metal removal, especially Ni and Zn removal were 96.5 and 95.2% at higher initial concentration. For acid/alkali wastewater, metal ions removing for Cd, Cr and Fe were 99.2%, 99.5% and 99.9%, respectively. Overall, these ligands are useful for metal removal by column method from industrial wastewater especially plating wastewater.  相似文献   

12.
利用X射线吸收精细结构谱(XAFS)对老化过程中土壤中铜的分子形态进行初步表征。以硫酸铜、氧化铜和硫化铜的X射线吸收扩展边结构(EXAFS)谱为参比,对土壤样品中Cu的EXAFS谱进行拟合,得到不同老化阶段与参比物质相对应的结合态Cu的百分含量,并与连续提取法表征进行比较。XAFS分析结果表明,老化阶段土壤样品中铜的主要结合形态是CuSO_4,同时还有部分CuS,基本不含有CuO。随着时间的推移,土壤中CuSO_4百分含量呈现出下降的趋势,CuS百分含量呈现出上升的趋势。这与连续提取法研究结果中其可交换态的百分比下降,残渣态上升的趋势相似。  相似文献   

13.
Water samples collected in an acid mine impacted watershed indicated that the concentrations of dissolved trace metals were diurnally influenced by mineral saturation, which is controlled primarily by pH and water temperature. Measurements taken suggested that these variations only occur at sample locations immediately downstream from the confluence of acidic and alkaline waters. It is at these locations where initial mineral precipitation occurred and where subtle changes in solubility were most affected, increasing trace metal removal when both the rate of photosynthesis (influencing pH in headwaters) and water temperature were at a maximum. The role of iron photoreduction (increased midday production of ferrous iron) on overall Cu, Mn, and Zn transport was also evaluated, but found to be inconclusive. Iron photoreduction may however influence adsorption and/or coprecipitation of trace metals through associated changes in oxidation state, solubility, and mineralogy of various iron colloids, which are produced upon the neutralization of acidic, metal enriched water. Furthermore, measured values of copper and zinc were compared to relative USEPA chronic criterion for exposure to continuous concentration (CCC) of metals by the calculation of a “toxicity unit” (TU). It was found that average values of both copper and zinc only exceeded the CCC (TU>1) in the acid mine-impacted Leona Creek. In general, zinc toxicity decreased while copper toxicity increased downstream of the confluence of the mine impacted Leona Creek and background Lion Creek (sampled at Lake Aliso), indicating a significant source of zinc in upstream, non mine-impacted samples.  相似文献   

14.
The actual harmful effects of industrial wastewater can not be reflected by the conventional water quality index. Therefore, the change in dissolved organic matter and the genetic toxicity of petrochemical wastewater were observed in the current study by examining the wastewater treatment plant of a large petrochemical enterprise in Northwest China. Using XAD-8, MSC, and DA-7 resins, the wastewater was separated into six fractions, namely, hydrophobic acid (HOA), hydrophobic neutral (HOB), hydrophobic alkaline, hydrophilic acid, hydrophilic alkaline, and hydrophilic neutral. Umu-test was used to detect the genetic toxicity of the wastewater samples, and fluorescence spectra were also obtained to examine genetic toxic substances. The results show that wastewater treatment facilities can effectively reduce the concentration of organic matter in petrochemical wastewater (p<0.05). However, the mixing of aniline wastewater can increase the amount of organic carbon (p<0.05) and can overload facilities. This finding shows that the mixed collection and joint treatment of different types of petrochemical wastewater can affect the water quality of the effluent. Particularly, hydrophobic substances can be difficult to remove and account for a relatively large proportion of the effluent. The mixture of aniline wastewater can increase the genetic toxicity of the effluent (p<0.05), and biologic treatment can not effectively decrease the toxicity. Most of the genetic toxicology may exist in the HOA and HOB fractions. Fluorescence spectroscopy also confirms this result, and tryptophan-like substances may play an important role in genetic toxicity.  相似文献   

15.
The conventional treatment method of soybean wastewater is expensive and generates waste sludge that requires further handling. Purple nonsulfur bacteria (PNSB) wastewater treatment is a clean technology and can generate single cell protein while degrading pollutants. A wild strain of PNSB, Rhodobacter sphaeroides Z08, was isolated from local soil and was used to treat soybean wastewater. To develop a cost-effective process, the work was performed under natural conditions without artificial light, aeration, nutrients addition, or pH and temperature adjustment. The results showed that the wild strain Rhodobacter sphaeroides Z08 could grow well under natural conditions. The growth curve showed two quick-growth periods and a turning point. The Z08 treatment of soybean wastewater was zero order reaction and COD reduction was 96% after 10 d. The major byproducts of the process were C2-C5 organic acids, predominantly butyric acid. No alcohol was found in the effluent. The initial COD/bacterial-mass ratio (F/M) had a significant effect on soybean wastewater treatment efficiency. When the initial F/M was lower than 10 mg-COD/mg-bacteria, a sufficient amount of time to achieve 90% of COD reduction was only three days. The Z08 biomass yield was 0.28g·g−1, and the bacterial protein content was 52%.  相似文献   

16.
Nowadays, the water ecosystem is being polluted due to the rapid industrialization and massive use of antibiotics, fertilizers, cosmetics, paints, and other chemicals. Chemical oxidation is one of the most applied processes to degrade contaminants in water. However, chemicals are often unable to completely mineralize the pollutants. Enhanced pollutant degradation can be achieved by Fenton reaction and related processes. As a consequence, Fenton reactions have received great attention in the treatment of domestic and industrial wastewater effluents. Currently, homogeneous and heterogeneous Fenton processes are being investigated intensively and optimized for applications, either alone or in a combination of other processes. This review presents fundamental chemistry involved in various kinds of homogeneous Fenton reactions, which include classical Fenton, electro-Fenton, photo-Fenton, electro-Fenton, sono-electro-Fenton, and solar photoelectron-Fenton. In the homogeneous Fenton reaction process, the molar ratio of iron(II) and hydrogen peroxide, and the pH usually determine the effectiveness of removing target pollutants and subsequently their mineralization, monitored by a decrease in levels of total organic carbon or chemical oxygen demand. We present catalysts used in heterogeneous Fenton or Fenton-like reactions, such as H2O2–Fe3+(solid)/nano-zero-valent iron/immobilized iron and electro-Fenton-pyrite. Surface properties of heterogeneous catalysts generally control the efficiency to degrade pollutants. Examples of Fenton reactions are demonstrated to degrade and mineralize a wide range of water pollutants in real industrial wastewaters, such as dyes and phenols. Removal of various antibiotics by homogeneous and heterogeneous Fenton reactions is exemplified.  相似文献   

17.
Sludge digestion is critical to control the spread of ARGs from wastewater to soil. Fate of ARGs in three pretreatment-AD processes was investigated. UP was more efficient for ARGs removal than AP and THP in pretreatment-AD process. The total ARGs concentration showed significant correlation with 16S rRNA gene. The bacteria carrying ARGs could be mainly affiliated with Proteobacteria. Sewage sludge in the wastewater treatment plants contains considerable amount of antibiotic resistance genes (ARGs). A few studies have reported that anaerobic digestion (AD) could successfully remove some ARGs from sewage sludge, but information on the fate of ARGs in sludge pretreatment-AD process is still very limited. In this study, three sludge pretreatment methods, including alkaline, thermal hydrolysis and ultrasonic pretreatments, were compared to investigate the distribution and removal of ARGs in the sludge pretreatment-AD process. Results showed that the ARGs removal efficiency of AD itself was approximately 50.77%, and if these three sludge pretreatments were applied, the total ARGs removal efficiency of the whole pretreatment-AD process could be improved up to 52.50%–75.07%. The ultrasonic pretreatment was more efficient than alkaline and thermal hydrolysis pretreatments. Although thermal hydrolysis reduced ARGs obviously, the total ARGs rebounded considerably after inoculation and were only removed slightly in the subsequent AD process. Furthermore, it was found that the total ARGs concentration significantly correlated with the amount of 16S rRNA gene during the pretreatment and AD processes, and the bacteria carrying ARGs could be mainly affiliated with Proteobacteria.  相似文献   

18.
Actual pharmaceutical wastewater was treated using a combined ultrasonic irradiation (US) and iron/coke internal electrolysis (Fe/C) technology. A significant synergetic effect was observed, showing that ultrasonic irradiation dramatically enhanced the chemical oxygen demand (COD) removal efficiencies by internal electrolysis. The effects of primary operating factors on COD removal were evaluated systematically. Higher ultrasonic frequency and lower pH values as well as longer reaction time were favorable to COD removal. The ratio of biochemical oxygen demand (BOD) and COD (B/C) of the wastewater increased from 0.21 to 0.32 after US-Fe/C treatment. An acute biotoxicity assay measuring the inhibition of bioluminescence indicated that the wastewater with overall toxicity of 4.3 mg-Zn2+·L-1 was reduced to 0.5 mg-Zn2+·L-1 after treatment. Both the raw and the treated wastewater samples were separated and identified. The types of compounds suggested that the increased biodegradability and reduced biotoxicity resulted mainly from the destruction of N,N-2 dimethyl formamide and aromatic compounds in the pharmaceutical wastewater.  相似文献   

19.
以花生壳活性炭对RO浓水进行吸附处理,利用傅立叶红外光谱(FTIR)和荧光光谱(EEM)研究花生壳活性炭对不同pH的RO浓水的吸附特性.结果表明,花生壳活性炭对溶解性有机碳(DOC)的吸附遵循准二级吸附动力学方程,特别是碱性条件下,DOC的吸附量随着pH的升高而降低.而且pH越高,达到吸附平衡的时间越长.通过FTIR光谱分析发现,活性炭的芳香结构吸收峰在吸附后红移至1630 cm-1,表明被吸附的有机物在该处有明显的特征吸收峰,而C—O和O—H官能团的吸收峰则因为钙离子等物质的吸附而显著降低.由EEM光谱分析可知,RO浓水的荧光物质主要由腐殖酸类腐殖质和富里酸类腐殖质组成,其荧光强度与DOC之间具有较好的线性相关性.  相似文献   

20.
This study provides an electrocoagulation process for the removal of metals such as cobalt, copper, and chromium from water using magnesium as anode and galvanized iron as cathode. The various parameters like pH, current density, temperature, and inter electrode distance on the removal efficiency of metals were studied. The results showed that maximum removal efficiency was achieved for cobalt, copper, and chromium with magnesium as anode and galvanized iron as cathode at a current density of 0.025?A?dm?2 at pH 7.0. First- and second-order rate equations were applied to study adsorption kinetics. The adsorption process follows second-order kinetics model with good correlation. The Langmuir and Freundlich adsorption isotherm models were studied using the experimental data. The Langmuir adsorption isotherm favors monolayer coverage of adsorbed molecules for the adsorption of cobalt, copper, and chromium. Temperature studies showed that adsorption was endothermic and spontaneous in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号