首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy consumption is a major cause of air pollution in Beijing, and the adjustment of the energy structure is of strategic importance to the reduction of carbon intensity and the improvement of air quality. In this paper, we explored the future trend of energy structure adjustment in Beijing till 2020, designed five energy scenarios focusing on the fuel substitution in power plants and heating sectors, established emission inventories, and utilized the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) to evaluate the impact of these measures on air quality. By implementing this systematic energy structure adjustment, the emissions of PM10, PM2.5, SO2, NO x , and non-methane volatile organic compounds (NMVOCs) will decrease distinctly by 34.0%, 53.2%, 78.3%, 47.0%, and 30.6% respectively in the most coalintensive scenario of 2020 compared with 2005. Correspondingly, MM5-Models-3/CMAQ simulations indicate significant reduction in the concentrations of major pollutants, implying that energy structure adjustment can play an important role in improving Beijing??s air quality. By fuel substitution for power plants and heating boilers, PM10, PM2.5, SO2, NO x , and NMVOCs will be reduced further, but slightly by 1.7%, 4.5%, 11.4%, 13.5%, and 8.8% respectively in the least coal-intensive scenario. The air quality impacts of different scenarios in 2020 resemble each other, indicating that the potential of air quality improvement due to structure adjustment in power plants and heating sectors is limited. However, the CO2 emission is 10.0% lower in the least coal-intensive scenario than in the most coal-intensive one, contributing to Beijing??s ambition to build a low carbon city. Except for energy structure adjustment, it is necessary to take further measures to ensure the attainment of air quality standards.  相似文献   

2.
Urban energy consumption is one of the most important causes of air pollution. Air pollution-oriented ecological risk assessment is of great significance to the promotion of urban environmental protection. This paper focuses on ecological risk in Xiamen city caused by air pollutant discharge from urban energy consumption. The Long-range Energy Alternatives Planning model was used to establish two scenarios of energy consumption in Xiamen city, and based on different scenarios, we estimated urban energy consumption and discharge quantity of air pollutant (DQAP). A box model and an expert scoring method were used to calculate the air pollution burden (APB) of SO2, NO2, CO, PM10 and PM2.5 and to obtain the probabilities of different air pollution loads. An ecological risk assessment model was developed and utilized to predict Xiamen city’s ecological risks in 2020. The results showed that under an energy-saving scenario, the ecological risks for PM2.5, SO2 and NO2 are high, whereas the ecological risks for CO and PM10 are low. Under a baseline scenario, the ecological risks for PM2.5, SO2 and NO2 are moderate, whereas the ecological risks for CO and PM10 are low. In addition, the APB of SO2, NO2, CO, and PM2.5, but not of PM10, is predicted to rise. In the simulation, energy generation from coal is the main source of air pollution. Although the DQAP from automobiles is not high, it is predicted to rise year-on-year. In summary, the ecological risk due to pollution in Xiamen city is high, and the main pollutants are SO2, NO2 and PM2.5.  相似文献   

3.
Particulate pollution was a critical challenge to the promise of good air quality during the 2008 Beijing Olympic Games, which took place from August 8th to 24th. To ensure good air quality for the Games, several temporary emission control measures were implemented in Beijing and surrounding areas. Ambient particulate matter concentration decreased significantly during the Olympic period; however, it is difficult to distinguish the effectiveness of those control measures since meteorology also affects ambient PM2.5 concentration. In this work, a multiple linear regression model based on continuous field monitoring at a roadside site was conducted to evaluate the effects of meteorology and emission control measures on the reduction of PM2.5 during the 2008 Olympic Games. The hourly data set was divided into two time periods, the no control period, June 22nd to July 4th, and the control period, July 28th to August 21st. The response variable was PM2.5 and the meteorology covariates used in the model were hourly temperature, dew point temperature, wind speed and precipitation. Wind direction was not a significant predictor of PM2.5 levels in either the control or the no control period. Using the meteorologically-based regression coefficients from the two time periods, meteorology was found to contribute to at least a 16% reduction in PM2.5 levels in the roadside microenvironment; while the pollution control measures contributed to at least a 43% reduction in PM2.5 levels.  相似文献   

4.
Air quality in an urban atmosphere is regulated by both local and distant emission sources. For air quality management in urban areas, identification of sources and their relationships with local meteorology and air pollutants are essential. The critical condition of air quality in Indo-Gangetic plain is well known, but lack of data on both local and distant emission sources limits the scope of improving air quality in this region. Concentrations of particulate matter of size lower than 10 μm (PM10) were assessed in the highly urbanized Varanasi city situated in middle Indo-Gangetic plain of India from 2014 to 2017, to identify the distant air pollution sources based on trajectory statistical models and local sources by conditional bivariate probability function. Modifying effects of meteorology and air pollutants on PM10 were also explored. Mean PM10 concentration for the study period was 244.8 ± 135.8 μg m?3, which was 12 times higher than the WHO annual guideline. Several distinct sources of traffic as the major source of PM10 were identified in the city. Trajectory statistical models like cluster analysis, potential source contribution function and concentration-weighted trajectory showed significant contributions from north-west and eastern directions in the transport of polluted air masses to the city. Dew point, wind speed, temperature and ventilation coefficient are the major factors in PM10 formation and dispersion.  相似文献   

5.
Motorized traffic is among the biggest CO2-emitting sources and is additionally dominating NOx emission. Engine technology shifts are approaching, while automobiles developed in Germany and Europe are exported worldwide together with the European emission thresholds for cars. The Diesel car boom induced by EU commission, national EU governments and car industry is accordingly analyzed for sustainability and its effects on environment. German CO2 emission reduction numbers by motorized traffic, as claimed by the government, are questioned. Radiative forcing by soot (black carbon) Diesel car emissions is added on the CO2 emissions by fuel combustion. Diesel cars without particle filters are found to cause an atmospheric warming. Modelled and measured NOx emission data are assessed to mismatch considerably. In spite of an ambitious national NOx reduction plan there is excess NOx emission by the German and European Diesel car boom. In this context environmental sustainability of battery electric vehicles (BEV) is investigated. Direct (by car) und indirect (by power plant) emissions (CO2, NOx, PM10, SO2) of cars with internal combustion engines (ICE) and BEVs, respectively, are calculated and compared. CO2-ecoanalysis revealed advantages for BEVs even operated with current German electricity mix based on around 15?% renewable sources.  相似文献   

6.

Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  相似文献   

7.
Based on the activity level and technical information of coal-fired power-generating units (CFPGU) obtained in China from 2011 to 2015, we, 1) analyzed the time and spatial distribution of SO2 and NOx emission performance of CFPGUs in China; 2) studied the impact of installed capacity, sulfur content of coal combustion, and unit operation starting time on CFPGUs’ pollutant emission performance; and 3) proposed the SO2 and NOx emission performance standards for coal-fired power plants based on the best available control technology. Our results show that: 1) the larger the capacity of a CFPGU, the higher the control level and the faster the improvement; 2) the CFPGUs in the developed eastern regions had significantly lower SO2 and NOx emission performance values than those in other provinces due to better economic and technological development and higher environmental management levels; 3) the SO2 and NOx emission performance of the Chinese thermal power industry was significantly affected by the single-unit capacity, coal sulfur content, and unit operation starting time; and 4) based on the achievability analysis of best available pollution control technology, we believe that the CFPGUs’ SO2 emission performance reference values should be 0.34 g/kWh for active units in general areas, 0.8 g/kWh for active units in high-sulfur coal areas, and 0.13 g/kWh for newly built units and active units in key areas. In addition, the NOx emission performance reference values should be 0.35 g/kWh for active units in general areas and 0.175 g/kWh for new units and active units in key areas.
  相似文献   

8.
Emission patterns of NOx and S‐compounds are analyzed to study their influence on the concentrations of SO2, NOx, sulphate and nitrate in the air. Air mass trajectories, emission inventories and cluster analysis are used to define the emission patterns.

The scheme that characterized most of the days is defined by low emissions from 48 hours until 18 hours before the measurements and it produces average concentrations. High concentrations are due to emission peaks. The time between these emission peaks and the measurement determines the importance of the emission peak on the concentration.  相似文献   

9.
It has been confirmed that the NOx-concentration in air is highest over industrial areas and that it decreases by more than 75%, parallel to traffic density, over urban areas as related to forested areas. A significant correlation excists between NO2-concentration and the parameters of “traffic density,” followed by “road density” and “number of inhabitants/km2” in urban areas. No positive correlation was found with the number of “registered cars” and the parameters of “land use”. In forested areas, the traffic density correlated with the NO2-concentration, but the correlation was not significant. The other parameters had no positive correlation with NO2-concentration. In forest, urban- and industrial-areas, the NOx-concentration in the air had a fairly constant ratio to traffic density.  相似文献   

10.
This paper investigates the effects of vertical eddy diffusivities derived from the 3 different planetary boundary layer (PBL) schemes on predictions of chemical components in the troposphere of East Asia. Three PBL schemes were incorporated into a regional air quality model (RAQM) to represent vertical mixing process and sensitivity simulations were conducted with the three schemes while other options are identical. At altitudes <2km, all schemes exhibit similar skill for predicting SO2 and O3, but more difference in the predicted NOx concentration. The Gayno–Seaman scheme produces the smallest vertical eddy diffusivity (Kz) among all schemes, leading to higher SO2 and NOx concentrations near the surface than that from the other 2 schemes. However, the effect of vertical mixing on O3 concentration is complex and varies spatially due to chemistry. The Gayno–Seaman scheme predicts lower O3 concentrations than the other two schemes in the parts of northern China (generally VOC-limited) and higher ones in most parts of southern China (NOx-limited). The Byun and Dennis scheme produces the largest mixing depth in the daytime, which bring more NOx into upper levels, and the mixing depth predicted by the Gayno–Seaman scheme is the smallest, leading to higher NOx and lower O3 concentrations near the surface over intensive emission regions.  相似文献   

11.
A computer aided tool was created for the calculation of emission values in Saxony. It is based on the Geographic Information System ArcInfo and enables the emission values for past, present and future periods to be assessed. At present, the anthropogenic air pollutants SO2, NOx, CO, NH3, NMVOC, TSP, CO2, CH4 and N2O can be calculated by means of emission factors and statistical values. The tool is open to future expansions. The moduls represent the following emission groups: Power stations, large agricultural farms and large industrial plants as point sources, as well as transport, households, small consumer and the total emission of agriculture as area sources. The local resolution of emission values, the relationship of emission values to geographic or political territories, the inclusion of a high resolved digital street network, and the use of actual data concerning land use, density of population and density of build up areas are realized by GIS ArcInfo. The dynamic emission inventory can be used, alone or in conjunction with an atmospheric dispersion model, to assess trends in air quality.  相似文献   

12.
A study has been conducted over a period of one year on measurements of air pollution in the Shuaiba Industrial Area (SIA) of Kuwait. The study included analysis of pollutant behaviour relative to the wind speed and direction. SIA comprises several large scale industries including three petroleum refineries, two power plants, two fertilizer plants, a cement plant, a chlorine and soda plant, a commercial harbour and two large oil loading terminals. Measurements of 15 parameters have been carried out every 5 minutes using a mobile laboratory fitted with an automatic calibrator and a data storage system. The pollutants studied include methane, non‐methane hydrocarbons (NMHC), carbon monoxide, carbon dioxide, nitrogen oxides (NO, NO2, and NO x ), sulphur dioxide, ozone and suspended dust. Meteorological parameters monitored simultaneously include wind speed and direction, air temperature, relative humidity, solar radiation, and barometric pressure. The air quality data collected using the mobile laboratory have been used to calculate the diurnal and monthly variations in the major primary and secondary pollutants. Distribution levels of these pollutants relative to wind direction and speed have also been used in the analysis. The results show large diurnal variations in some pollutant concentrations. Generally, two types of concentration variations have been found, depending on whether the species is a primary or a secondary pollutant. Diurnal variations with two maxima were observed in the concentrations of primary pollutants including NO, SO2, NMHC, CO and suspended dust, whereas a single maximum was observed for secondary pollutants such as O3and NO2. The monthly variations of SO2and NO x showed maximum values during the warm months. However, ozone showed a quite marked seasonal variation with maxima during spring and late summer and a minimum during the early summer. The results also indicated a common source for NO x , SO2, NMHC, CO and suspended dust to the North‐West (NW) of the monitoring station. Moreover for NO x and SO2, another less significant source is to the South‐South‐West (SSW) and South‐West (SW) of the monitoring station.  相似文献   

13.
Zhang  Chao  Li  Sha  Guo  Gan-lan  Hao  Jing-wen  Cheng  Peng  Xiong  Li-lin  Chen  Shu-ting  Cao  Ji-yu  Guo  Yu-wen  Hao  Jia-hu 《Environmental geochemistry and health》2021,43(9):3393-3406

Numerous studies had focused on the association between air pollution and health outcomes in recent years. However, little evidence is available on associations between air pollutants and premature rupture of membranes (PROM). Therefore, we performed time-series analysis to evaluate the association between PROM and air pollution. The daily average concentrations of PM2.5, SO2 and NO2 were 54.58 μg/m3, 13.06 μg/m3 and 46.09 μg/m3, respectively, and daily maximum 8-h average O3 concentration was 95.67 μg/m3. The strongest effects of SO2, NO2 and O3 were found in lag4, lag06 and lag09, and an increase of 10 μg/m3 in SO2, NO2 and O3 was corresponding to increase in incidence of PROM of 8.74% (95% CI 2.12–15.79%), 3.09% (95% CI 0.64–5.59%) and 1.68% (95% CI 0.28–3.09%), respectively. There were no significant effects of PM2.5 on PROM. Season-specific analyses found that the effects of PM2.5, SO2 and O3 on PROM were more obvious in cold season, but the statistically significant effect of NO2 was observed in warm season. We also found the modifying effects by maternal age on PROM, and we found that the effects of SO2 and NO2 on PROM were higher among younger mothers (<?35 years) than advanced age mothers (≥?35 years); however,?≥?35 years group were more vulnerable to O3 than?<?35 years group. This study indicates that air pollution exposure is an important risk factor for PROM and we wish this study could provide evidence to local government to take rigid approaches to control emissions of air pollutants.

  相似文献   

14.
Air pollution poses a serious threat to human health in Asia. This study analyzes the association of air pollutants and greenness with incidence rates of allergic rhinitis in Seoul at the administrative district level to gain insight into district-level urban policies to improve public health. A spatial regression model is constructed to investigate the correlation between allergic rhinitis incidence rates and five air pollutants measured at 128 air pollution monitoring stations around Seoul: sulfur dioxide (SO2), particulate matter less than 10 μm (PM10), ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO). The allergic rhinitis incidence data are derived from the National Health Insurance Service’s database that includes the number of allergic rhinitis-related clinic visits by the patients over 20 years of age and living in Seoul. A kriging geostatistical interpolation was used to estimate average air pollution level of 423 administrative districts. To assess pollen concentrations that can affect allergic rhinitis, the average normalized difference vegetation index (NDVI) is measured based on the urban greenness. The model, controlling for built environment and socio-economic attributes, identifies the possibility of a weak association between allergic rhinitis incidence rates and carbon monoxide levels. The NDVI value is negatively correlated with allergic rhinitis incidence rates, implying a complicated aspect in relation to the effect of urban greenness.  相似文献   

15.

Background

The decreasing NOX concentrations at urban measurement stations in Germany are in agreement with the reduction of NOX emissions from vehicular traffic. However, the measured NO2 concentrations are stagnating nationwide. In 2010, at more than the half of the urban measurement stations in Germany, annual mean values for NO2 exceeded the new Europe-wide limit value of 40 μg/m3 (20 ppbv) NO2. Similar findings are reported from many other member states of the European Union.

Results

The observed trend of the airborne NO2 concentrations has different reasons. Firstly, the NO2/NOx emission ratio has increased significantly during the last two decades. Furthermore, secondary NO2, caused by the titration reactions of NO with ozone (O3) and peroxy radicals (RO2), is responsible for the major fraction (approximately 70%) of the measured NO2. However, secondary NO2 shows a highly nonlinear dependency on NOx and thus, is decreasing much more slowly than expected from the decreasing NOx levels. Based on the results from the present study, the increased NO2/NOX emission ratio can only explain a minor fraction of the observed high airborne NO2 concentration in the city center.

Conclusions

A further reduction of primary NO2 emissions, due to improved exhaust gas treatment, will not have a strong influence on urban NO2 levels, and a further significant reduction of the NOX emissions, in particular from vehicular traffic, is necessary in order to meet the annual mean limit value for NO2 of about 20 ppb in the future.  相似文献   

16.
The rapid growth of China’s economy has led to severe air pollution characterized by acid rain, severe pollution in cities, and regional air pollution. High concentrations are found for various pollutants such as sulfur dioxides (SO2), nitrogen oxides (NOx), and fine particulates. Great efforts have thus been undertaken for the control of air pollution in the country. This paper discusses the development and application of appropriate technologies for reducing the major pollutants produced by coal and vehicles, and investigates air quality modeling as an important support for policy-making.  相似文献   

17.
Niu  Honghong  Wang  Baoqing  Liu  Bowei  Liu  Yuhong  Liu  Jianfeng  Wang  Zebei 《Environmental Fluid Mechanics》2018,18(4):829-847

To explore the effect of traffic emissions on air quality within street canyon, the wind flow and pollutant dispersion distribution in urban street canyons of different H/W, building gap and wind direction are studied and discussed by 3D computational fluid dynamics simulations. The largest PM2.5 concentrations are 46.4, 37.5, 28.4 µg/m3 when x = ? 88, ? 19.3, ? 19.3 m in 1.5 m above the ground level and the ratio of H/W is 1:1, 1:2 and 2:1, respectively. The flow around the top of the building and clearance flow between the buildings in street canyon influence by different H/W, which affected the diffusion of fine particulate matters. The largest PM2.5 concentrations are 88.1, 31.6 and 33.7 µg/m3 when x = 148.0, ? 92.3 and ? 186.7 m above the ground level of 1.5 m height and the building gap of 0, 20 and 40%, respectively. The air flows are cut by the clearance in the street canyons, and present the segmental characteristics. The largest PM2.5 concentrations are 10.6, 11.2 and 16.0 µg/m3 when x = 165.3 m, x = 58.0 and 1.5 m above the ground level of 1.5 m height and wind direction of the parallel to the street, perpendicular to the street and southwest, respectively. Modelled PM2.5 concentrations are basic agreement with measured PM2.5 concentrations for southwest wind direction. These results can help analyze the difussion of PM2.5 concentration in street canyons and urban planning.

  相似文献   

18.
Ambient concentrations of PM10 (x?≤?10?µm) and PM2.5 (x?≤?2.5?µm) particulate fractions collected from Ikoyi Lagos, Nigeria, as well as their elemental compositions are presented in this study. Both size-segregated fractions were collected using a double staged ‘Gent’ stack filter unit sampler. Elemental characterizations of dust laden filters were carried out using proton-induced X-ray emission (PIXE) technique. Twenty-two elements (Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb, Br, Rb, Sr, Zr, Ag, Cd, and Ta) were detected as well as their concentrations and correlations were determined for both particulate size fractions. Their correlation matrix result indicates that some of the trace elements detected could have common source origins or similar chemical properties. The results were similar to the levels observed in moderately polluted urban areas and there is need for source identification and apportionment using receptor models in future studies.  相似文献   

19.
Actions to slow atmospheric accumulation of greenhouse gases also would reduce conventional air pollutants yielding “ancillary” benefits that tend to accrue locally and in the near-term. Using a detailed electricity model linked to an integrated assessment framework to value changes in human health, we find a tax of $25 per metric ton of carbon emissions would yield NOx-related health benefits of about $8 per metric ton of carbon reduced in the year 2010 (1997 dollars). Additional savings of $4–$7 accrue from reduced investment in NOx and SO2 abatement in order to comply with emission caps. Total ancillary benefits of a $25 carbon tax are $12–$14, which appear to justify the costs of a $25 tax, although marginal benefits are less than marginal costs. At a tax of $75, greater total benefits are achieved but the value per ton of carbon reductions remains roughly constant at about $12.  相似文献   

20.

Objective and Background

The nitrogen oxides NO and NO2 and, in particular, their ratio (NO/NO2), play important roles in the radical-system of the atmospheric boundary layer. There were various indications upon a dropping NO/NO2-ratio in citiex over the last years, however, no proof has been given yet Especially in densely populated areas such as the federal state of North Rhine-Westphalia (NRW), such a change can have significant influences upon various atmospheric reactions. The objective of this investigation was to prove the existence of a systematic change of the NO/NO2-ratio, to describe the development of NOx over the past 2 decades at different locations and to determine the causes for this development.

Methods

To detect changes of the NO/NO2-ratio we processed the data of 11 continuously operating air quality stations of the State Environment Agency (LUA NRW) with time series reaching back up to 20 years. We investigated rural stations, stations in the urban background and heavily traffic influenced locations. It was possible to calculate and assess the NO/NO2-ratio under consideration of the fast reaction of ozone with NO. There were clear indications towards existing trends and they could be determined as statistically significant using the nonparametric Mann-Kendall Test. The analysis of possible causes for the change of the NO/NO2-ratio focused upon the change of the global radiation, the change of the patterns of the atmosphetic circulation, and the frequency of cyclones and anticyclones meteorological conditions in Central Europe, the introduction of automotive catalytic converters, and the development of the atmospheric oxidation-capacity.

Results and conclusions

The results are indicating a decline of the ratio at traffic-influenced stations with a statistical significance over 95%. The negative trend can also be detected at most urban background stations. It was problematic to perform the trend-analysis of the rural background station in the Egge-Mountains because of the fragmentary character of the dataset. Regional differences in the development of the NO/NO2-ratio indicate towards various causes. Crucial for the situation at the rural areas are the changed trajectories of cyclones and anticyclones as well as the decline of the atmospheric oxidation-capacity, while the traffic plays another important role at urban stations. The negative trend at the traffic-stations was intensified by the introduction of catalytic converters, which lead to a reduction in emissions of NOx

Recommendations and prospects

The significance of the NO/NO2-ratio for the oxidation capacity of the atmosphere shows the necessity to further monitor this development. Previous investigations detected a decline in total NOx without examining the relative development of the two nitrogen oxides towards each other. Gaining insight into the local differences of this ratio helps to allocate sources and to develop understanding of the atmospheric processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号