首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photo-Fenton reactions, which could yield hydroxyl radicals via the catalytic degradation of H2O2 by Fe(II), were focused as one of the abiotic degradation processes of bisphenol A (BPA) in surface waters. At pH 6, in the presence of H2O2 only, 32% of BPA was degraded after 120?min of irradiation. However, 97% of BPA was degraded in the presence of both H2O2 and Fe(II). Without light irradiation, no BPA degradation was observed even in the presence of Fe(II) and H2O2. These results show that photo-Fenton processes are effective in the natural attenuation of BPA in surface water. In addition, the presence of humic acids (HAs), which were of more aliphatic nature, resulted in enhancing BPA degradation via the photo-Fenton processes. Therefore, HAs can be one of the important factors in enhancing the degradation of BPA in surface water via the photo-Fenton processes.  相似文献   

2.
The photochemical degradation of bisphenol A (BPA) was studied in the presence of natural humic substances from different origins under simulated solar irradiation. BPA underwent insignificant direct photolysis in neutral water, but rapid photosensitized degradation in four humic substances solutions via pseudo-first-order reaction occurred. The photo-degradation rate of BPA was insensitive to the different initial BPA concentrations and was inhibited in aerated solution compared with the deoxygenated medium. The reactive oxygen species (ROS) such as ·OH and 1O2 produced from excitation of humic substances under irradiation was determined from the quenching kinetic experiment using molecular probe. The five main intermediate photoproducts of BPA in Nordic lake fulvic acid (NOFA) were tentatively identified using gas chromatography/mass spectrometer (GC/MS). Based on the identification of ROS and the analysis of photoproduct formation, the possible phototransformation pathways of BPA were proposed, involving the direct photolysis due to the energy transfer from the triplet state humic substance (3HS*) to BPA molecules and hydroxyl radical addition and oxidation as well.  相似文献   

3.
The reaction mechanism and pathway of the ozonation of 2,4,6-trichlorophenol (2,4,6-TCP) in aqueous solution were investigated. The removal efficiency and the variation of H2O2, Cl? formic acid, and oxalic acid were studied during the semi-batch ozonation experiments (continuous for ozone gas supply, fixed volume of water sample). The results showed that when there was no scavenger, the removal efficiency of 0.1 mmol/L 2,4,6-TCP could reach 99% within 6 min by adding 24 mg/L ozone. The reaction of molecular ozone with 2,4,6-TCP resulted in the formation of H2O2. The maximal concentration of H2O2 detected during the ozonation could reach 22.5% of the original concentration of 2,4,6-TCP. The reaction of ozone with H2O2 resulted in the generation of a lot of OH? radicals. Therefore, 2,4,6-TCP was degraded to formic acid and oxalic acid by ozone and OH? radicals together. With the inhibition of OH? radicals, ozone molecule firstly degraded 2,4,6-TCP to form chlorinated quinone, which was subsequently oxidized to formic acid and oxalic acid. Two reaction pathways of the degradation of 2,4,6-TCP by ozone and O3/OH? were proposed in this study.  相似文献   

4.
To evaluate possible use of microwave-enhanced H2O2-based (MW/H2O2) process to degrade trace nitrobenzene (NB) in water, a series of batch experiments were conducted. The results showed that 2450MHz microwave irradiation significantly enhanced oxidative decomposition of nitrobenzene (NB) in a H2O2 system. About 90% NB was degraded by the MW/ H2O2 process in 30 min. Moreover, the MW/ H2O2 process could enhanced the oxidative degradation of NB even at relatively low temperature (50°C). When the initial concentration of NB was 300??g/L, the optimum ratio of H2O2 to NB and MW power were 70 and 300W respectively. The presence of humic acid significantly increased H2O2 dosage. The ultraviolet absorbance at 254 nm (UV254) indicated degradation of NB was stepwise and some intermediates were produced. The gas chromatography-mass spectrometric (GC-MS) analysis showed that main intermediates were nitrophenolic and carbonyl compounds.  相似文献   

5.
There is actually a need for efficient methods to clean waters and wastewaters from pollutants such as the bisphenol A endocrine disrupter. Advanced oxidation processes currently use persulfate or peroxymonosulfate to generate sulfate radicals. There are, however, few reports on the use of sulfite to generate sulfate radicals, instead of persulfate or peroxymonosulfate, except for dyes. Here we studied the degradation of the bisphenol A using iron(III) as catalyst and sulfite as precursor of oxysulfur radicals, at initial pH of 6, under UV irradiation at 395 nm. The occurrence of radicals was checked by quenching with tert-butyl alcohol and ethanol. Bisphenol A degradation products were analyzed by liquid chromatography coupled with mass spectrometry (LC–MS). Results reveal that iron(III) or iron(II) have a similar oxidation efficiency. Quenching experiments show that the oxidation rate of bisphenol A is 47.7 % for SO 4 ·? , 37.3 % for SO 5 ·? and 15 % for HO·. Bisphenol A degradation products include catechol and quinone derivatives. Overall, our findings show that the photo-iron(III)–sulfite system is efficient for the oxidation of bisphenol A at circumneutral pH.  相似文献   

6.
Photocatalytic oxidation using semiconductors is one of the advanced oxidation processes for degradation of organic pollutants in water and air. TiO2 is an excellent photocatalyst that can mineralize a large range of organic pollutants such as pesticides and dyes. The main challenge is to improve the efficiency of the TiO2 photocatalyst and to extend TiO2 light absorption spectra to the visible region. A potential solution is to couple TiO2 with a narrow band gap semiconductor possessing a higher conduction band such as bismuth oxide. Therefore, here we prepared Bi2O3/TiO2 heterojunctions by the impregnation method with different Bi/Ti ratio. The prepared composites have been characterized by UV–Vis diffused reflectance spectra and X-ray diffraction. The photocatalytic activity of the heterojunction has been determined from the degradation of orange II under visible and UV light. Results show that Bi2O3/TiO2 heterojunctions are more effective than pure TiO2-anatase under UV-A irradiation, with an optimum for the Bi/Ti ratio of 5 %, for the photocatalytic degradation of Orange II. However, the photocatalytic activity under irradiation at λ higher than 420 nm is not much improved. Under UV–visible radiation, the two semiconductors are activated. We propose a mechanism explaining why our products are more effective under UV–visible irradiation. In this case the charge separation is enhanced because a part of photogenerated electrons from the conduction band of TiO2 will go to the conduction band of bismuth oxide. In this composite, titanium dioxide is the main photocatalyst, while bismuth oxide acts as adsorbent photosensitizer under visible light.  相似文献   

7.
Fe-pillared bentonite (Fe-Bent) was prepared by ion exchange as heterogeneous catalyst for degradation of organic contaminants in petroleum refinery wastewater. X-ray diffraction analysis showed the existence of α-Fe2O3. The effects of pH, H2O2 concentration, and catalyst dosage on the rate of lowering the chemical oxygen demand (COD) were investigated in detail. Removal efficiency of COD can be up to 92% under the following conditions: dosage of Fe-Bent 7 g L?1, pH value 3, and H2O2 concentration 10 mmol L?1. Fe-Bent showed good stability for the degradation of organics in petroleum refinery wastewater for five cycles. The adsorption of organics in wastewater onto Fe-Bent could be well described by a pseudo-second-order kinetic model.  相似文献   

8.
双酚F(bisphenol F, BPF)和双酚AF(bisphenol AF, BPAF)作为双酚A(bisphenol A, BPA)的替代品已被投入生产和使用,然而目前有关BPA替代品毒性的数据还很缺乏。本文从急性毒性和应激响应2个方面比较了BPF、BPAF与BPA对非洲爪蛙蝌蚪的毒性。结果表明,48 h的半致死浓度(LC_(50))顺序为BPF(11.01 mg·L~(-1))>BPA(7.54 mg·L~(-1))>BPAF(2.87 mg·L~(-1));对氧化应激水平的影响BPAF强于BPA,BPF与BPA相近;BPA和BPAF对热休克蛋白基因表达水平有影响,BPF没有影响。本研究提示,BPAF作为BPA的替代品,其毒性强于BPA,而BPF与BPA类似。  相似文献   

9.
Bisphenol A is an endocrine disruptor. Complete mineralization of bisphenol A is therefore a primary environmental issue. Here, the combination of ozonation and photocatalysis by TiO2 is proposed for the degradation and final mineralization of bisphenol A. TiO2 films deposited onto two sides of an Al lamina show good stability and high surface roughness. We used a specific experimental setup employing two facing ultraviolet lamps and TiO2 layers, together with an ozone flux. High-performance liquid chromatography–mass spectrometry determinations on bisphenol A solutions sampled at different reaction times and Fourier Transform Infrared analyses of the oxide at the end of the reaction were performed to study the reaction intermediates and the overall degradation mechanism. Our results show that pollutant mineralization achieved with the combined method is far higher, of 55% in the case of 0.3 mM bisphenol A, than those obtained by individual treatments such as photolysis (<3%), ozonation (6%), photocatalysis (6%), and by other combined processes: photolytic ozonation (13%) and catalytic ozonation (15%). This finding is explained by the occurrence of highly synergistic effects.  相似文献   

10.
Metal/sulfite systems are currently used for SO 4 ?? generation and oxidative removal of organic contaminants. However, homogeneous metal/sulfite systems are limited because their working pHs must be acidic and metal ions cannot be separated from the bulk reaction solution. As a consequence, these drawbacks have severely limited the application of metal/sulfite systems in real conditions. To address these issues, we tested the use of copper ferrite (CuFe2O4), a ferromagnetic nanoparticle, to catalyze sulfite oxidation for the degradation of the metoprolol drug. The reaction mechanism was investigated by electron spin resonance, X-ray photoelectron spectroscopy, and radical quenching assay. The effects of pH, CuFe2O4, and sulfite dosages were also assessed. Results show that SO 4 ?? was the primary radical responsible for metoprolol degradation. Higher pHs induced more metoprolol degradation using CuFe2O4/sulfite. Moreover, CuFe2O4 remained morphologically intact and catalytically active after four batches of recycling. Overall, our findings show that CuFe2O4/sulfite can effectively degrade water contaminants in alkali pH and withhold catalyst activity after multiple reuses, therefore addressing the issues associated with homogeneous metal/sulfite systems.  相似文献   

11.
This paper presents pilot‐scale membrane treatment results performed on biologically treated effluents from fermentation industry and ozone oxidation on concentrates from the same membrane treatment system. The results obtained from the ultrafiltration (UF) and/or the reverse osmosis (RO) systems indicate that membrane treatment are very effective for COD, Color, NH3‐N and conductivity removal. Ozone oxidation of the membrane concentrates was tested to increase biodegradability of the wastes. The initial ratios of Biochemical oxygen demand (BOD5) to Chemical oxygen demand (COD) were increased significantly by applying chemicaloxidation with O3 and O3 + H2O2.  相似文献   

12.
In order to provide basic data for practical application, photodegradation experiment of N-nitrosodimethylamine (NDMA) in aqueous solution was carried out with a low-pressure Hg lamp. Effects of the initial concentration of NDMA, solution pH, dissolved oxygen, and the presence of humic acid on NDMA photodegradation were investigated. NDMA at various initial concentrations selected in this study was almost completely photodegraded by UV irradiation within 20 min, except that at 1.07 mmol/L, NDMA could be photodegraded almost completely in the acidic and neutral solutions, while the removal efficiency decreased remarkably in the alkaline solution. Dissolved oxygen enhanced the NDMA photodegradation, and the presence of humic acid inhibited the degradation of NDMA. Depending on the initial concentration of NDMA, NDMA photodegradation by UV obeyed the pseudo-first-order kinetics. Dimethylamine, nitrite, and nitrate were detected as the photodegradation products of NDMA. 1O2 was found to be the reactive oxygen species present in the NDMA photodegradation process by UV, based on the inhibiting experiments using tert-butanol and sodium azide.  相似文献   

13.
Removal of carbamazepine from urban wastewater by sulfate radical oxidation   总被引:2,自引:0,他引:2  
The occurrence of bioactive trace pollutants such as pharmaceuticals in natural waters is an emerging issue. Numerous pharmaceuticals are not completely removed in conventional wastewater treatment plants. Advanced oxidation processes may represent an interesting alternative to completely mineralize organic trace pollutants. In this article, we show that sulfate radicals generated from peroxymonosulfate/CoII are more efficient than hydroxyl radicals generated from the Fenton’s reagent (H2O2/FeII) for the degradation of the pharmaceutical compound, carbamazepine. The second-order rate constant for the reaction of SO4 ·− with carbamazepine is 1.92·109 M−1 s−1. In laboratory grade water and in real urban wastewater, SO4 ·− yielded a faster degradation of carbamazepine compared to HO· . Under strongly oxidizing conditions, a nearly complete mineralization of carbamazepine was achieved, while under mildly oxidizing conditions, several intermediates were identified by LC–MS. These results show for the first time in real urban wastewater that sulfate radicals are more selective than hydroxyl radicals for the oxidation of an organic pollutant and may represent an interesting alternative in advanced oxidation processes.  相似文献   

14.
The compilation of ozone data for the federal states of Hesse and Northrhine-Westphalia (NRW) in Germany indicated that the concentration of ozone level slightly decreased during the years 1990–1998. The average concentration of ozone over forest areas is significantly higher than over cities. Only the maximum figures in the years approached one another. However, values passing the legal thresholds (180 μg ozone/m3) were two to three-fold higher over forests than over cities. The ozone concentration in air is inversely proportional to the traffic density. It is suggested that the lower NOx concentration over the forest than over cities is involved in the maintenance of the higher ozone-concentration over forest areas. In the cities, the ozone is reduced by NO to almost zero at night, whereas it is reduced by only about 50% over forests with lower NO concentrations. This reduction is only partially compensated in connection with the photolysis of NO2 and the subsequent oxidation of O2 to O3 during the day. The ozone situation is principally the same in the federal states of Hesse and Northrhine-Westphalia.  相似文献   

15.
In this paper, factors influencing the mineralization of dimethyl phthalate (DMP) during catalytic ozonation with a cerium-doped Ru/Al2O3 catalyst were studied. The catalytic contribution was calculated through the results of a comparison experiment. It showed that doping cerium significantly enhanced catalytic activity. The total organic carbon (TOC) removal over the doped catalyst at 100 min reached 75.1%, 61.3% using Ru/Al2O3 catalyst and only 14.0% using ozone alone. Catalytic activity reached the maximum when 0.2% of ruthenium and 1.0% of cerium were simultaneously loaded onto Al2O3 support. Results of experiments on oxidation by ozone alone, adsorption of the catalyst, Ce ion’s and heterogeneous catalytic ozonation confirmed that the contribution of heterogeneous catalytic ozonation was about 50%, which showed the obvious effect of Ru-Ce/Al2O3 on catalytic activity.  相似文献   

16.
4A zeolite supported nanoparticulate zero-valent iron (nZVI/4A zeolite), synthesized through borohydride reduction method, was used as a catalyst with H2O2 to build Fenton-like reaction system to degrade methylene blue (MB) in model wastewater. The characteristics and primary mechanisms of the catalyst were investigated. The results show that nZVI/4A zeolite has the potential as a Fenton-like catalyst, and (about 30 mg/L) MB was degraded completely in 3 h with 10 mM H2O2, 0.2 g/L catalyst, and initial pH of 3.0. The MB degradation rates were obtained at least 70% in the tests with initial pH ranged from 2.0 to 9.0 and the catalyst dose rose from 0.2 to 5.0 g/L. Importantly, the catalyst also has a distinctive ability to increase the solution pH value from its initial acidic pH and then maintain the value at close to neutrality. This ability was controlled by both the initial pH and the catalyst dose. MB degradation clarified that hydroxyl radical was the dominated active oxidative specie in the tests with initial acidic pH and low catalyst dose (less 2.5 g/L); otherwise, Fe(VI) oxidation was the main mechanism for MB degradation; and the two processes shared synergistic effect in MB degradation in the present test. The catalyst has high operational stability in both of the composites with low iron leaching (less 2%) and catalyzing ability. Therefore, nZVI/4A zeolite has great potential as a Fenton-like catalyst and is used with H2O2 to build Fenton-like system which could be used to degrade MB efficiently.  相似文献   

17.
Four composites of metal oxide doped with activated carbon with a metal oxide weight of 20% were prepared using mechano-mixing method. The nano-catalysts were characterized by N2-adsorption–desorption, X-ray diffraction analysis, transmission electron microscopy, Fourier-transform infrared spectroscopy, UV-diffuse reflectance, and photoluminescence spectroscopy. Photo-catalytic degradation of methylene blue dye under UV 254 nm and visible light was examined. In general, prepared catalysts are more active for degradation of dye under visible light than UV, reaching 96% within 180?min irradiation using the SnO catalyst. Photo-degradation of methylene blue followed pseudo first order reaction mechanism with a rate constant of 14.8?×?10?3?min?1, and the time required for removal of 50% of dye was 47?min.  相似文献   

18.
由于双酚A(BPA)具有内分泌干扰等毒性效应,有些国家已经开始限制其在部分工业品生产中使用。一些双酚A类似物因用于替代BPA而被大量使用。因其与双酚A具有相似的分子结构,双酚A类似物是否也具有内分泌干扰等毒性效应受到越来越多的关注。采用逐步多元线性回归(MLR)方法,构建了可预测双酚A类似物雌激素效应的定量结构-活性关系模型。模型的决定系数R~2=0.899,去一法交叉验证系数Q_(LOO)~2=0.868,Bootstrapping验证系数Q_(BOOT)~2=0.755,均方根误差RMSE=0.339,表明模型具有较好的拟合优度、稳健性;验证集决定系数Q_(EXT)~2=0.921,外部验证系数Q_(EXT)~2=0.810,均方根误差RMSE=0.638,表明模型具有较好的预测能力。采用欧几里德距离方法和Wil iams图表征了模型应用域,依据分子描述符对模型进行了机理解释,并用所建模型,填补了22种其他双酚A类似物缺失的雌激素干扰效应数据。  相似文献   

19.
This paper is an attempt to summarise and critically assess our knowledge on the formation, variation in concentrations and impact of ozone under the aspect of abatement strategies. The present ozone budget is determined to about 50% through human activities where methane and carbon monoxide contribute more than 80% to ozone formation. This “residual” or “background” ozone determines the annual mean ozone concentration. Due to the long time period (months and years) required for CH4 and CO oxidation, both compounds do not contribute to the excessive ozone concentrations often found in the summer. Moreover, the increase in tropospheric ozone is becoming a global problem. Because emissions of CH4 and CO are increasing globally, the “background” ozone will also increase in the future. Non-methanehydrocarbons (NMHC) may produce O3 within a few days because of their high reactivity concerning oxidants. For photochemical O3 formation, the source-sink budget has to be taken into account for making an estimation of the net ozone formation. Ozone accumulation only occurs when the removal potential (especially heterogeneous processes within clouds, but also a reduction in the net photochemical formation) of the air mass is small. This “excess” ozone has been reduced successfully within the last decade, most likely as a result of automobile catalyst use. An impact of O3 on humans has been found only for concentrations >100 ppb. Thus, O3 should not be a problem for people. Although vegetation is much more sensitive (esp. conifers), it is not possible to present reliable thresholds at present. There is evidence that the dose (accumulation exposure) is an important criterion. Therefore, a mean annual concentration which may possibly be increasing further should be the target of air pollution controls. Former measures and ideas of ozone controlling have no usefulness in this sense.  相似文献   

20.
双酚F(BPF)和双酚S(BPS)作为双酚A(BPA)替代品广泛使用,然而有关BPF和BPS的毒性数据非常有限。采用系列浓度的BPA、BPF、BPS溶液,暴露黑斑蛙胚胎和蝌蚪96 h,通过半致死浓度(LC50)、最小生长抑制浓度(MCIG)和致畸率等指标比较3种化合物的急性毒性。结果显示:100 mg·L-1BPS未导致黑斑蛙胚胎及蝌蚪畸形和死亡。BPA和BPF对黑斑蛙胚胎的96h-LC50分别为7.68 mg·L-1和7.99 mg·L-1,MCIG分别为4.47 mg·L-1和4.77 mg·L-1,最大致畸率为33.33%;对蝌蚪的96 h-LC50分别为9.00 mg·L-1和9.52 mg·L-1。依据《化学农药环境安全评价准则》的毒性分级标准,判定BPA和BPF的毒性等级为中毒,BPS的毒性等级为低毒。表明BPF急性毒性与BPA相当,BPS急性毒性低于BPA。本研究数据可为BPF、BPS作为BPA替代品的生产和使用以及相应的环境管理提供毒理学参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号