首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A sampling procedure for 2,4- and 2,6-toluenediisocyanate (TDI) and 4,4′-diphenylmethane diisocyanate (MDI) in the range 0.007-0.7 mg/m3 in a 15 L air sample is described. The sampling is performed with 9-(N-methylaminomethyl)-anthracene (MAMA) adsorbed on a solid sorbent, Amberlite XAD-2. The recoveries are 80–100% in this chemosorption reaction. The urea derivatives are desorbed with N,N-dimethylformamide and analysed by high performance liquid chromatography (HPLC). Samples and prepared chemosorption tubes are stable for at least two weeks if stored in the dark. To complete the investigation, field measurements of TDI were performed in an industrial atmosphere.  相似文献   

2.
Antunes P  Viana P  Vinhas T  Rivera J  Gaspar EM 《Chemosphere》2012,88(11):1332-1339
This paper reports, for the first time, a study of dioxin emissions from 10 siderurgies and metallurgies, secondary copper, aluminum and lead metallurgies, in Portugal. The study reports the emission factors and total emission amounts of PCDD/Fs, dioxin-like PCBs and hexachlorobenzene (HCB). The congener patterns were characterized and are discussed. The results showed that the total amount of PCDFs is higher than PCDDs in flue gas of each industrial unit. The toxic equivalent emission factors of pollutants emitted are 3098-3338 ngI-TEQt(-1) for PCDD/Fs and 597-659 ng I-TEQt(-1) for dioxin-like PCBs in siderurgies production (total estimated emission amounts released to atmosphere of 3.9-4.5 g I-TEQyr(-1)), 50-152 ng I-TEQt(-1) for PCDD/Fs and 24-121 ng I-TEQt(-1) for dioxin-like PCBs in ferrous foundries production (total estimated emission amounts released to atmosphere of 0.0010-0.0016 g I-TEQyr(-1)) and 5.8-5715 ng I-TEQt(-1) for PCDD/Fs and 0.49-259 ng I-TEQt(-1) for dioxin-like PCBs in non-ferrous foundries production (total estimated emission amounts released to atmosphere of 0.00014-0.12 g I-TEQyr(-1)). The HCB emission from siderurgies production is 0.94-3.2 mg t(-1) (total estimated emission amounts released 0.94-3.8 g yr(-1)), being much smaller, residual, in the emissions of the other types of plants (0.0012-0.026 mg t(-1) production and total estimated emission amounts released to atmosphere of 0.013-1.7 mg yr(-1)).  相似文献   

3.
It is well known that mainstream (MS) and sidestream (SS) cigarette smoke contains a vast number of chemical substances. Previous studies have emphasized SS smoke rather than MS smoke to which smokers are exposed, and most have used chamber tests that have several disadvantages such as wall losses. Emissions from standard research cigarettes have been measured, but relatively few constituents have been reported, and only the 1R4F (low nicotine) cigarette type has been tested. This study provides a comprehensive characterization of total, MS and SS smoke emissions for the 1R5F (ultra low nicotine), 2R4F (low nicotine), and 1R3F (standard nicotine) research cigarettes research cigarettes, including emission factors for a number of toxic compounds (e.g., benzene) and tobacco smoke tracers (e.g., 2,5-dimethyl furan). Emissions of volatile organic compounds (VOCs) and particulate matter (PM) are quantified using a dynamic dilution emission measurement system that is shown to produce accurate, rapid and reproducible results for over 30 VOCs and PM. SS and MS emissions were accurately apportioned based on a mass balance of total emissions. As expected, SS emissions greatly exceeded MS emissions. The ultra low nicotine cigarette had lower emissions of most VOCs compared to low and standard nicotine cigarettes, which had similar emissions. Across the three types of cigarettes, emissions of benzene (296–535 μg cig−1), toluene (541–1003 μg cig−1), styrene (90–162 μg cig−1), 2-dimethyl furan (71–244 μg cig−1), naphthalene (15–18 μg cig−1) and other VOCs were generally comparable to or somewhat higher than literature estimates using chamber tests.  相似文献   

4.
This paper presents results from a methane (CH4) gas emission characterization survey conducted at the Loma Los Colorados landfill located 60 km from Santiago, Chile. The landfill receives approximately 1 million metric tons (t) of waste annually, and is equipped with leachate control systems and landfill gas collection systems. The collected leachate is recirculated to enable operation of the landfill as a bioreactor. For this study, conducted between April and July 2000, a total of 232 surface emission measurements were made over the 23-ha surface area of the landfill. The average surface flux rate of CH4 emissions over the landfill surface was 167 g x m(-2) x day(-1), and the total quantity of surface emissions was 13,320 t/yr. These values do not include the contribution made by "hot spots," originating from leachate pools caused by "daylighting" of leachate, that were identified on the landfill surface and had very high CH4 emission rates. Other point sources of CH4 emissions at this landfill include 20 disconnected gas wells that vent directly to the atmosphere. Additionally, there are 13 gas wells connected to an incinerator responsible for destroying 84 t/yr of CH4. The balance also includes CH4 that is being oxidized on the surface of the landfill by meth-anotrophic bacteria. Including all sources, except leachate pool emissions, the emissions were estimated to be 14,584 t/yr CH4. It was estimated that less than 1% of the gas produced by the decomposition of waste was captured by the gas collection system and 38% of CH4 generated was emitted to the atmosphere through the soil cover.  相似文献   

5.
Gasoline distribution in the metropolitan area of Mexico City (MAMC) represents an area of opportunity for the abatement of volatile organic compound (VOC) emissions. The gasoline distribution in this huge urban center encompasses several operations: (1) storage in bulk and distribution plants, (2) transportation to gasoline service stations, (3) unloading at service stations' underground tanks, and (4) gasoline dispensing. In this study, hydrocarbon (HC) emissions resulting from breathing losses in closed reservoirs, leakage, and spillage from the operations just listed were calculated using both field measurements and reported emission factors. The results show that the contribution of volatile HC emissions due to storage, distribution, and sales of gasoline is 6651 t/year, approximately 13 times higher than previously reported values. Tank truck transportation results in 53.9% of the gasoline emissions, and 31.5% of emissions are generated when loading the tank trucks. The high concentration of emissions in the gasoline transportation and loading operations by tank trucks has been ascribed to (1) highly frequent trips from distribution plant to gasoline stations, and vice versa, to cope with excessive gasoline sales per gasoline station; (2) low leakproofness of tank trucks; and (3) poor training of employees. In addition, the contribution to HC evaporative and exhaust emissions from the vehicles of the MAMC was also evaluated.  相似文献   

6.
Polycyclic aromatic hydrocarbon emissions from clinical waste incineration   总被引:1,自引:0,他引:1  
Sadhra S  Wheatley AD 《Chemosphere》2007,66(11):2177-2184
Since the introduction of the Environmental Protection Act in the UK, there are few reports of PAH emissions from clinical waste incinerators (CWIs) operating to improved performance standards. The main aim of this study is to determine PAH emissions from a state-of-the-art CWI focusing on the effects of reactive gases and operating variables on emissions. This was carried out by collection of stack samples over three phases of operation.

At stack conditions, most PAHs are predicted to be in the vapour phase. Reactive losses of PAHs were closely correlated by rank with expected reactivities from laboratory studies. Estimates of emissions incorporating sampling losses were derived, although no correlation was found between PAH losses and the modest levels of reactive stack gases. PAH concentrations were one to two orders of magnitude lower than earlier reports from incinerators without effective air pollution control equipment (APCE). The low levels of carbon monoxide recorded were not correlated with any PAHs.

This study demonstrates the impact of efficient combustion conditions and APCE on PAH emissions from a CWI.  相似文献   


7.
Geologic emissions of methane to the atmosphere   总被引:6,自引:0,他引:6  
Etiope G  Klusman RW 《Chemosphere》2002,49(8):777-789
The atmospheric methane budget is commonly defined assuming that major sources derive from the biosphere (wetlands, rice paddies, animals, termites) and that fossil, radiocarbon-free CH4 emission is due to and mediated by anthropogenic activity (natural gas production and distribution, and coal mining). However, the amount of radiocarbon-free CH4 in the atmosphere, estimated at approximately 20% of atmospheric CH4, is higher than the estimates from statistical data of CH4 emission from fossil fuel related anthropogenic sources. This work documents that significant amounts of "old" methane, produced within the Earth crust, can be released naturally into the atmosphere through gas permeable faults and fractured rocks. Major geologic emissions of methane are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane) and, subordinately, to inorganic reactions (Fischer-Tropsch type) in geothermal systems. Geologic CH4 emissions include diffuse fluxes over wide areas, or microseepage, on the order of 10(0)-10(2) mg m(-2) day(-1), and localised flows and gas vents, on the order of 10(2) t y(-1), both on land and on the seafloor. Mud volcanoes producing flows of up to 10(3) t y(-1) represent the largest visible expression of geologic methane emission. Several studies have indicated that methanotrophic consumption in soil may be insufficient to consume all leaking geologic CH4 and positive fluxes into the atmosphere can take place in dry or seasonally cold environments. Unsaturated soils have generally been considered a major sink for atmospheric methane, and never a continuous, intermittent, or localised source to the atmosphere. Although geologic CH4 sources need to be quantified more accurately, a preliminary global estimate indicates that there are likely more than enough sources to provide the amount of methane required to account for the suspected missing source of fossil CH4.  相似文献   

8.
Evaluating sources of indoor air pollution   总被引:2,自引:0,他引:2  
Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on "sink" surfaces.  相似文献   

9.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   

10.
Abstract

This study characterized the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from the stack flue gases of 17 industrial sources, which were classified into 10 categories. The results show that the mean PCDD/PCDF concentration of secondary zinc smelter (Zn-S) and secondary copper smelter (Cu-S) is 2.44 ng international toxic equivalent (I-TEQ)/Nm3 (N represents normal conditions at 0 °C, 760 mmHg), which was found to be significantly greater than that of industrial waste incinerators (mean concentration = 0.15 ng I-TEQ/Nm3). These results imply that the controlling of secondary metallurgical melting processes is more important than industrial waste incineration for the reduction of PCDD/PCDF emissions. The mean emission factors of cement production, Zn-S and Cu-S, are 0.052, 1.99, and 1.73 μg I-TEQ/t product, respectively. For industrial waste incineration, the mean emission factors of waste rubber, waste liquor, waste sludge, industrial waste solid (IWI)-1, IWI-2, IWI-3, and IWI-4 are 0.752, 0.435, 0.760, 6.64, 1.67, 2.38, and 0.094 μg I-TEQ/t feed, respectively. Most of the PCDD/PCDF emission factors established in this study are less than those reported in previous studies, which could be because of the more stringent regulations for PCDD/PCDF emissions in recent years.  相似文献   

11.
Nitrous oxide (N2O) emissions measurements were made on light duty gasoline and light duty diesel vehicles during chassis dynamometer testing conducted at the Environment Canada and California Air Resources Board vehicle emissions laboratories between 2001 and 2007. Per phase and composite FTP emission rates were measured. A subset of vehicles was also tested using other driving cycles to characterize emissions as a function of different driving conditions. Vehicles were both new (<6500 km) and in-use (6500–160,000 km) and were tested on low sulfur gasoline (<30 ppm) or low sulfur diesel (<300 ppm). Measurements from selected published studies were combined with these new measurements to give a test fleet of 467 vehicles meeting both US EPA and California criteria pollutant emissions standards between Tier 0 and Tier 2 Bin 3 or SULEV. Aggregate distance-based and fuel-based emission factors for N2O are reported for each emission standard and for each of the different test cycles. Results show that the distinction between light duty automobile and light duty truck is not significant for any of the emission standards represented by the test fleet and the distinction between new and aged catalyst is significant for vehicles meeting all emission standards but Tier 2. This is likely due to the relatively low mileage accumulated by the Tier 2 vehicles in this study as compared to the durability requirement of the standard. The FTP composite N2O emission factors for gasoline vehicles meeting emission standards more stringent than Tier 1 are substantially lower than those currently used by both Canada and the US for the 2005 inventories. N2O emission factors from test cycles other than the FTP illustrate the variability of emission factors as a function of driving conditions. N2O emission factors are shown to strongly correlate with NMHC/NMOG emission standards and less strongly with NOX and CO emission standards. A review of several published reports on the effect of gasoline sulfur content on N2O emissions suggests that additional research is needed to adequately quantify the increase in N2O emissions as a function of fuel sulfur.  相似文献   

12.
A grid-based, bottom-up method has been proposed by combining a vehicle emission model and a travel demand model to develop a high-resolution vehicular emission inventory for Chinese cities. Beijing is used as a case study in which the focus is on fuel consumption and emissions from hot-stabilized activities of light-duty gasoline vehicles (LGVs) in 2005. The total quantity of emissions, emission intensity, and spatial distribution of emissions at 1- by 1-km resolution are presented and compared with results from other inventory methods commonly used in China. The results show that the total daily fuel consumption and vehicular emissions of carbon dioxide, carbon monoxide, hydrocarbons, and oxides of nitrogen from LGVs in the Beijing urban area in 2005 were 1.95 x 10(7) L, 4.28 x 10(4) t, 1.97 x 10(3) t, 0.28 x 10(3) t, and 0.14 x 10(3) t, respectively. Vehicular fuel consumption and emissions show spatial variations that are consistent with the traffic characteristics. The grid-based inventory developed in this study reflects the influence of traffic conditions on vehicle emissions at the microscale and may be applied to evaluate the effectiveness of traffic-related measures on emission control in China.  相似文献   

13.
Section 812 of the Clean Air Act Amendments (CAAA) of 1990 requires the U.S. Environmental Protection Agency (EPA) to perform periodic, comprehensive analyses of the total costs and total benefits of programs implemented pursuant to the CAAA. The first prospective analysis was completed in 1999. The second prospective analysis was initiated during 2005. The first step in the second prospective analysis was the development of base and projection year emission estimates that will be used to generate benefit estimates of CAAA programs. This paper describes the analysis, methods, and results of the recently completed emission projections. There are several unique features of this analysis. One is the use of consistent economic assumptions from the Department of Energy's Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 and 2020 emissions for all sectors. Another is the analysis of the different emissions paths for both with and without CAAA scenarios. Other features of this analysis include being the first EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-state emission projections, incorporating control factor files from the Regional Planning Organizations (RPOs) that had completed emission projections at the time the analysis was performed, and modeling the emission benefits of the expected adoption of measures to meet the 8-hr ozone National Ambient Air Quality Standards (NAAQS), the Clean Air Visibility Rule, and the PM2.5 NAAQS. This analysis shows that the 1990 CAAA have produced significant reductions in criteria pollutant emissions since 1990 and that these emission reductions are expected to continue through 2020. CAAA provisions have reduced volatile organic compound (VOC) emissions by approximately 7 million t/yr by 2000, and are estimated to produce associated VOC emission reductions of 16.7 million t by 2020. Total oxides of nitrogen (NO(x)) emission reductions attributable to the CAAA are 5, 12, and 17 million t in 2000, 2010, and 2020, respectively. Sulfur dioxide (SO2) emission benefits during the study period are dominated by electricity-generating unit (EGU) SO2 emission reductions. These EGU emission benefits go from 7.5 million t reduced in 2000 to 15 million t reduced in 2020.  相似文献   

14.
The focus of the studies presented in the preceding companion paper (Part A: Review) and here (Part B: Applications) is on defining representative emission rates from vegetation for determining the roles of biogenic volatile organic compound (BVOC) emissions in atmospheric chemistry and aerosol processes. The review of previously published procedures for identifying and quantifying BVOC emissions has revealed a wide variety of experimental methods used by various researchers. Experimental details become increasingly critical for quantitative emission measurements of low volatility monoterpenes (MT) and sesquiterpenes (SQT). These compounds are prone to be lost inadvertently by uptake to materials in contact with the sample air or by reactions with atmospheric oxidants. These losses become more prominent with higher molecular weight compounds, potentially leading to an underestimation of their emission rates. We present MT and SQT emission rate data from numerous experiments that include 23 deciduous tree species, 14 coniferous tree species, 8 crops, and 2 shrubs. These data indicate total, normalized (30 degrees C) basal emission rates from <10 to 5600ngCg(-1)h(-1) for MT, and from <10 to 1150ngCg(-1)h(-1) for SQT compounds. Both MT and SQT emissions have exponential dependencies on temperature (i.e. rates are proportional to e(betaT)). The inter-quartile range of beta-values for MT was between 0.12 and 0.17K(-1), which is higher than the value commonly used in models (0.09K(-1)). However many of the MT emissions also exhibited light dependencies, making it difficult to separate light and temperature influences. The primary light-dependent MT was ocimene, whose emissions were up to a factor of 10 higher than light-independent MT emissions. The inner-quartile range of beta-values for SQT was between 0.15 and 0.21K(-1).  相似文献   

15.
16.
Laboratory and field sampling experiments were conducted to determine the phase-distribution of polynuclear aromatic hydrocarbons (PAH) in the ambient atmosphere and to determine the potential for artifact formation due to volatilization and ozone (O3) reaction during normal sampling conditions. The study was conducted in two segments to investigate both summer and winter ambient temperature effects. The winter measurements reflect stronger association of PAH with the particulate phase than the summer data, but data from both seasons show appreciable filter losses due to volatilization of phenanthrene, anthracene, fluoranthene, benz(a)anthracene and chrysene. No evidence was found for volatilization of the heavier PAH, including benzo(e)pyrene, benzo(a)pyrene, indeno(l,2,3-c,d)pyrene, benzo(g,h,i)perylene and coronene. Although O3 reacted readily with particulate matter that was freshly spiked with PAH in the laboratory experiments, no evidence was found for reaction of O3 with particulate matter during the field sampling experiments.  相似文献   

17.
A survey to estimate the polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) emissions of Spanish hot dip galvanising sector was carried out during 2002. This investigation is the first presenting Spanish experimental data related to this industrial sector. Three different matrices: flue gas, ash and filter dust were tested to quantify the PCDD/Fs generated during the galvanising process. The organic source of PCDD/F formation could be from the insufficient degreasing o from inhibitors or additives used in the pickling steps such as quinoline, isoquinoline, 8-methylquinoline or polyether phosphoric acid. Low levels PCDD/Fs were achieved in air emissions when air control devices are used. On the contrary, filter dusts are highly contaminated; indicating that the absence of air control devices would increase the risk of fugitive emissions. Homologue profiles and Principal Component Analysis demonstrate there are differences in the formation mechanisms in the bath zone (ashes) compared to the stack location (filter dusts and air emissions), related to the de novo synthesis and reaction time. The annual PCDD/F emission to the atmosphere for this sector during 2002 has been estimated in 0.023g I-TEQ. The emission factor of plants with air control devices has been calculated at 0.030microg I-TEQ/ton of galvanised steel.  相似文献   

18.
Since current estimates of hexachlorobenzene (HCB), polychlorinated biphenyls (PCB), dioxins (PCDD) and furans (PCDF) from ships are based on a relatively limited and old data set, an update of these emission factors has been outlined as a target towards improved Swedish emission inventories. Consequently, a comprehensive study was undertaken focusing on these emissions from three different ships during December 2003 to March 2004. Analyses were performed on 12 exhaust samples, three fuel oil samples and three lubricating oil samples from a representative selection of diesel engine models, fuel types and during different “real-world” operating conditions.The determined emissions corresponded reasonably well with previous measurements. The data suggest however that previous PCDD/PCDF emission factors are somewhat higher than those measured here. As expected the greatest emissions were observed during main engine start-up periods and for engines using heavier fuel oils. Total emissions for 2002, using revised emission factors, have been calculated based on Swedish sold marine fuels and also for geographical areas of national importance. In terms of their toxic equivalence (WHO-TEQ), the PCDD/PCDF emissions from ships using Swedish fuels are small (0.37–0.85 g TEQ) in comparison to recent estimates for the national total (ca. 45 g TEQ). Emissions from other land-based diesel engines (road vehicles, off-road machinery, military vehicles and locomotives) are estimated to contribute a further 0.18–0.42 g TEQ. Similarly, HCB and PCB emissions from these sources are small compared to 1995 national emission inventories.  相似文献   

19.
The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NOx) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach. High-resolution emission maps for the Republic of Ireland have been created using emission totals and a geographical information system, supported by surrogate statistics and landcover information. Data have been subsequently allocated to the EMEP 50 x 50-km grid, used in long-range transport models for the investigation of transboundary air pollution. Approximately two-thirds of SO2 emissions in Ireland emanate from two grid-squares. Over 50% of total SO2 emissions originate from one grid-square in the west of Ireland, where the largest point sources of SO2 are located. Approximately 15% of the total SO2 emissions originate from the grid-square containing Dublin. SO2 emission densities for the remaining areas are very low, < 1 t km-2 year-1 for most grid-squares. NOx emissions show a very similar distribution pattern. However, NOx emissions are more evenly spread over the country, as about 40% of total NOx emissions originate from road transport.  相似文献   

20.
Emissions from land transport, and from road transport in particular, have significant impacts on the atmosphere and on climate change. This assessment gives an overview of past, present and future emissions from land transport, of their impacts on the atmospheric composition and air quality, on human health and climate change and on options for mitigation.In the past vehicle exhaust emission control has successfully reduced emissions of nitrogen oxides, carbon monoxide, volatile organic compounds and particulate matter. This contributed to improved air quality and reduced health impacts in industrialised countries. In developing countries however, pollutant emissions have been growing strongly, adversely affecting many populations. In addition, ozone and particulate matter change the radiative balance and hence contribute to global warming on shorter time scales. Latest knowledge on the magnitude of land transport's impact on global warming is reviewed here.In the future, road transport's emissions of these pollutants are expected to stagnate and then decrease globally. This will then help to improve the air quality notably in developing countries. On the contrary, emissions of carbon dioxide and of halocarbons from mobile air conditioners have been globally increasing and are further expected to grow. Consequently, road transport's impact on climate is gaining in importance. The expected efficiency improvements of vehicles and the introduction of biofuels will not be sufficient to offset the expected strong growth in both, passenger and freight transportation. Technical measures could offer a significant reduction potential, but strong interventions would be needed as markets do not initiate the necessary changes. Further reductions would need a resolute expansion of low-carbon fuels, a tripling of vehicle fuel efficiency and a stagnation in absolute transport volumes. Land transport will remain a key sector in climate change mitigation during the next decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号